
 

Nonlinear structural-acoustic analysis of orthogonally 
stiffened composite cylindrical shells with piecewise isolators 
 
Qu, Yegao1; Xie, Fangtao; Zhang, Wenming; Peng, Zhike; Meng, Guang 
   

State Key Laboratory of Mechanical System and Vibration 
Shanghai Jiao Tong University 
No.800 Dongchuan R.D., Minhang District, Shanghai, China 
 
 

ABSTRACT 
This paper is concerned with the numerical analysis of the structural and acoustic 
responses of a stiffened composite cylindrical shell attached with piecewise isolators. 
The system is immersed in an infinite acoustic fluid. The cylindrical shell is 
reinforced by a series of circumferential rings and longitudinal stringers. The 
isolators in the cylindrical shell contain motion-limiting stops, the restoring forces 
of which are expressed as bi-linear functions of the isolator deformation. A modified 
variational method is adopted to establish the nonlinear dynamics model of the 
structural system, and the acoustic fluid is modelled by a time-domain boundary 
element method. The contribution of the grouped circumferential wave modes of the 
shell to the nonlinear vibration and radiated sound responses of the coupled 
structural system is examined. 
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1. INTRODUCTION 

Vibrating machines are commonly mounted on a stiffened composite cylindrical 
shell via a series of vibration isolators in underwater vehicles. These isolators may be 
designed with motion-limiting stops in order to prevent excessive displacement between 
the machine and the shell, when the system is subjected to large external loads. The 
motion-limiting stops lead to an abrupt change in the stiffness characteristics of the 
isolators, accounting for the inherent piecewise non-linearity of the system. The practical 
importance of a stiffened cylindrical shell with piecewise isolators in an underwater 
vehicle necessitates a comprehensive understanding of the structural and acoustic 
behaviors of the system. 

The vibration and sound radiation of a coupled shell and isolation system immersed 
in a compressible fluid have been investigated by few researchers. Most of the previous 
investigations are limited to linear structural-acoustic problems based on harmonic 
frequency-domain approaches. Guo [1] investigated the sound scattering of a coupled 
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cylindrical shell carrying a linear spring-mass system. Achenbach et al. [2] studied the 
structural and acoustic responses of a cylindrical shell attached with an internal mass-
spring oscillator. Choi et al. [3] analyzed the vibration and acoustic behaviors of 
submerged shells carrying a dense array of oscillators. Rebillard et al. [4] investigated the 
acoustic behaviors of a finite cylindrical shell containing a spring-mass system. Caresta 
and Kessissoglou [5,6] developed a semi-analytical method in order to predict the radiated 
sound from a submarine pressure hull with attached passive and active isolation systems. 
Based on a ray technique, Ho [7] analyzed the sound radiation of a coupled cylindrical 
shell and mass-spring oscillator system. Titovich and Norris [8] investigated the sound 
scattering of a cylindrical shell carrying linear isolators. Qu et al. [9] presented a semi-
analytical method for analyzing the vibration and acoustic responses of a coupled 
submarine hull and propeller-shafting system, in which the elastic shaft is connected to 
the hull through a series of linear springs.  

The aim of this paper is to derive a formulation for predicting the nonlinear vibration 
and acoustic behaviors of a coupled composite cylindrical shell and piecewise isolation 
system. The shell is orthogonally reinforced by a series of circumferential rings and 
longitudinal stringers. The nonlinear dynamics model of the structural system is 
established by a modified variational method for the shell combined with a discrete 
element method for the stiffeners, and the acoustic fluid is formulated using a time-
domain boundary element method. The effects of the circumferential wave mode of the 
cylindrical shell on the nonlinear structural and acoustic behaviors of the coupled system 
are discussed. 
 
2.  Theory 

The structural system considered here consists of an orthogonally stiffened 
composite cylindrical shell and a rigid body, which are connected to each other through 
a number of vibration isolators, as shown in Fig.1. The acoustic fluid exterior to the 
structural system is assumed to be light, inviscid and compressible with density f  and 
speed of sound fc . The cylindrical shell is assumed to be thin and composed of an 
arbitrary number of orthotropic material layers with length L, mean radius R  and total 
thickness H . A cylindrical coordinate system ( , ,x z ) located on the mid-surface of the 
shell is introduced, in which the axial, circumferential and normal displacements at an 
arbitrary material point of the shell are denoted by u , v  and w , respectively. The 
reinforcements, including the circumferential rings and the longitudinal stringers, in the 
cylindrical shell may be few or many in number, non-uniform or uniform in size, and 
arbitrarily distributed in space. Without loss of generality, the i th ring stiffener is 
assumed to be attached to the cylindrical shell at rg

ix  measured from the left end of the 
shell, and the i th longitudinal stringer is located along a single attachment line at st

i  of 
the shell. The isolators are represented by piecewise linear springs and viscous dampers, 
which may be mounted inside of the cylindrical shell at arbitrary positions. The 
connecting point of the i th isolator with the cylindrical shell is defined as: ( , )i i ix r r . 
In the present analysis, the nonlinear coupled system is excited by external forces applied 
either on the shell or on the rigid body. 

The rigid body simplified as a lumped mass is mounted on a series of vibration 
isolators. Each isolator is represented by two stage suspension springs and a viscous 
damper. The primary suspension spring is always effective. The secondary spring is used 
to prevent excessive relative displacement between the rigid body and the shell when the 
relative displacement exceeds a certain value  , i.e., the gap of the two suspension 
springs. The restoring force of the isolator is expressed as: 



     1 2k k                                                   (1) 

where 1k  and 2k  are the stiffness coefficients of the primary and secondary suspension 
springs, respectively.   is the relative displacement between the rigid body and the shell. 

( )   is the Heaviside step function. 

 

 

 

Fig.1 Coupled stiffened composite cylindrical shell and isolation system in fluid  

A modified variational method is utilized here to establish the nonlinear dynamics 
model of the coupled cylindrical shell and piecewise isolation system. Based on the 
method, the equations of motion of the coupled shell and piecewise isolation system can 
be obtained by setting the following formulation to zero, given as: 

s rg st iso
Totalδ δ δ δ δ                                                 (2) 

where δ  is the variational operator. Total  is the total energy of the coupled structural 
system. s is the energy of the cylindrical shell. rg  and st are the total energies 
contributed by the circumferential rings and longitudinal stringers in the shell, 
respectively. iso  is the energy of the isolation system. The detailed expressions of s , 

rg  and st  are referred to Ref. [9].  
The rigid body is assumed to move in the vertical direction. The variation of the 

energy of the isolation system is expressed as:  
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where û  and û  are the displacement and acceleration of the rigid body, respectively. m
is the mass of the rigid body. isoN  is the number of isolators. l  and l  are the 
deformation and velocity of the l th isolator, respectively. lc  is the damping coefficient 
of the l th isolator. F  is the external force applied on the rigid body.  

The deformation of the l  th isolator is equal to the relative displacement of the rigid 
body and the shell (see Fig.2), written by: 
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where the circumferential displacement ( , )v tr  and the normal displacement ( , )w tr of the 
shell are measured at the connection point of the l th isolator. Once l  is obtained, the 
relative velocity l  can be computed directly. 
 

 

Fig.2 Displacement relation of rigid body and stiffened cylindrical shell 

  Considering the periodicity of the cylindrical shell in the circumferential direction, 
the displacement components of each shell segment can be expanded by Fourier series. 
In doing so, a three-dimensional vibration problem of the shell is transformed into a set 
of one-dimensional problems, which correspond to the harmonics of the Fourier 
expansion. The displacement field of each shell segment is expanded by Fourier series 
for the circumferential coordinate and Chebyshev orthogonal polynomials for the axial 
coordinate, given as:  
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where ( )m x is the m th order Chebyshev orthogonal polynomials of first kind. M  is the 
highest order of the polynomials truncated in the analysis. n is the circumferential wave 
mode number of the shell. N is the maximum circumferential wave mode number. nmu , 

nmu , nmv , nmv , nmw and nmw  are generalized displacement coefficients. 

û û
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Based on the modified variational method, the discretized equations of motion of 
the coupled structural system can be obtained as: 

   fst snds f         MU CU K K K K U F F U F                     (6) 

where U , U and U  are the generalized displacement, velocity and acceleration vectors of 
the coupled structural system, respectively. M is the generalized mass matrix of the 
system. C  is the damping matrix contributed by the viscous dampers of the isolators and 
the structural damping of the stiffened composite shell. K  and K  are the generalized 
interface stiffness matrices. fstK  is the coupled stiffness matrix due to the connection of 
the primary suspension springs and the cylindrical shell. sF  is generalized force vectors 
of the mechanical loads applied on the shell. sndF  is the vector containing the restoring 
forces of the secondary suspension springs. fF  is the generalized force vector due to the 
fluid pressure. 

The stiffened composite cylindrical shell is assumed to be closed at its two ends with 
rigid acoustic baffles. The Kirchhoff integral equation equivalent to the transient wave 
equation and the Sommerfeld radiation condition is adopted here for computing the 
radiated sound from the shell, given as [10]:  
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For the stiffened cylindrical shell with acoustic baffles, a numerical solution of the 
above equation is imperative. In this paper, Equation 7 is solved by a time-domain BEM, 
which consists of two basic steps: (1) a discretization of the real time axis into a sequence 
of equally spaced time intervals with certain variations of sound pressure and flux over 
each time interval, and (2) a discretization of the fluid-structure interface fS  into a 
number of flat quadrilateral elements, over which a constant distribution of sound 
pressure and flux is assumed. On the vibrating surface of the shell, the following interface 
condition is enforced: ˆ( , ) / ( , )s f sp t n w t   r r . The linear system of algebraic 
equations for the acoustic fluid can be achieved by using the collocation method, given 
as [10]: 

     
min min

1 1
1 1

, 1i i i ic p t
 

    
 

     
 

      r r p p                         (8) 

The nonlinear dynamics of the structural system is solved using the implicit Newmark 
integration method. Once U  is known from Equation 6, the sound pressure p at any 
given time on the structural-acoustic surface can be computed from Equation 8 by seting 

0.5c  and starting at the first time step and solving recursively until reaching the desired 
time. Once the sound pressure p  on all boundary elements are determined, the sound 
pressure at any field point in the fluid can be computed by Equation 8 with 1.0c  .  
 
3.  Results and discussion 

The nonlinear vibration behaviors of a coupled composite stiffened cylindrical shell 
and isolation system are examined. A composite laminated [0°/90°/0°/90°] cylindrical 
shell stiffened by circumferential rings and longitudinal stringers is considered. The 
physical properties of the shell are: 4L  m, 1R  m and 0.005H  m; 1 50E  GPa, 

2 2E  GPa, 12 1.0G  GPa, 12 0.25   and 1500  kg/m3. Nine ring stiffeners with 
height rg 0.015h  m and width rg 0.015d  m are equally-spaced along the axial direction 
of the shell. The i th ring stiffener is located at rg 0.4ix i  ( 1,2, 9i  , ) from the left end 



of the cylindrical shell. In addition, the cylindrical shell is reinforced by 3 longitudinal 
stringers of rectangular cross-section with height st 0.015h  m and width st 0.015d  m. 
The stringers are located at: st ( 4) / 6i i    ( 1,2,3i  ). All the ring stiffeners and 
longitudinal stringers are placed concentrically with respect to the mid-surface of the 
cylindrical shell. The mass of the rigid body is 12kg. The rigid body is supported by four 
groups of piecewise isolators, which are mounted on the shell at: ( , ) (1.6m,5 / 6)x  
for Isolator I, ( , ) (1.6m,7 / 6)x    for Isolator II, ( , )x   (2.4m,5 / 6)  for Isolator III, 
and ( , )x   (2.4m,7 / 6)  for Isolator IV. The two ends of the cylindrical shell are 
clamped. The density of the fluid is 1.225f  kg/m3 and the speed of sound is 340fc 
m/s. 

The comparison of the vibration responses of the coupled system computed by 
different circumferential wave modes of the shell is illustrated in Fig.3. The structural 
responses of the shell are measured at Q  ( / 2x L ,  ) in the normal direction. The 
stiffness and damping coefficients of each isolator are: 4

1 2.5 10k    N/m, 2 16k k  and 
50c   Nꞏs/m, and the gap of two suspension springs in each isolator is 34 10   m. 

The force acting on the rigid boy is: 0 0sin(2 )F F f t  with 0 800F  N and 0 18f  Hz. 
The horizontal axis of the figure represent response frequencies normalized by the forcing 
frequency of the external force. The predominant response of the coupled system is that 
the vibrating rigid body periodically interacts with the secondary suspension springs per 
certain forcing cycle, and the system parameters are repeated periodically. This results in 
complex nonlinear vibration behaviors of the system. In general, the vibration responses 
of the shell are dominated by 0 : 8n  , and the contribution of higher-order modes 
corresponding to 8n   can be neglected. The frequency responses of the shell exhibit a 
series of super-harmonics 0f  ( 2,3,   ). It is observed from Fig.3(b) that the 
displacement amplitudes of the shell corresponding to 0f  ( 2,3,  ) decrease as the 
order of the harmonic is increased. 
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Fig.3 Vibration responses of the shell: (a) time-histories of displacement; (b) frequency 
spectra responses 

The radiated sound responses of the coupled stiffened composite cylindrical shell 
and piecewise isolation system are examined. The gap of two suspension springs in each 
isolator is 34 10 m. The system is under a harmonic excitation rgd 0 0sin(2 )F F f t  
applied on the rigid body with 0 300F  N and 0 18f  Hz. The dependence of the sound 
pressure responses of the coupled system on the contribution of the circumferential wave 
modes of the shell is shown in Fig.4. The time-histories of the sound pressure are 
measured at 0Q̂  ( 0X  m, 0Y  m, 20Z  m). The results show that the contribution the 

0 :1n   modes of the shell to the radiated sound of the coupled system is significant. The 



sound pressure responses determined by 0 : 2n   and 0 : 3n   modes are almost 
overlapped. This implies that the contribution of the 3n   modes of the shell to the 
radiated sound of the coupled system can be neglected. It is observed from Figs.3(a) that 
the time-histories of the sound pressure radiated from the coupled system are dominated 
by 0 : 8n   modes. The frequency spectra shows that a peak right above the forcing 
frequency 0f  is presented. However, the energy of the radiated sound is distributed over 
a broad frequency interval, as a series of super-harmonics 0f  ( 2,3,  ) exist in the 
frequency spectra of the sound pressure. The largest sound pressure amplitude does not 
appear at the excitation frequency, but at the third-order super-harmonic. In addition, 
several strong peaks with amplitudes comparable to that at the excitation frequency can 
be observed in the frequency spectra of the sound pressure. Consequently, the radiated 
acoustic pressure of the coupled structural system is dominated by super-harmonics.  
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Fig.4 Sound pressure: (a) time-history response; (b) frequency spectra response 

 
4.  CONCLUSIONS 
 The structural and acoustic responses of a coupled stiffened composite cylindrical 
shell and piecewise isolation system immersed in an infinite acoustic medium are 
analyzed. A modified variational method is employed to formulate the numerical model 
of the structural system, and the circumferential rings and longitudinal stringers attached 
to the shell are treated as discrete elements. Each isolator is represented by a piecewise 
linear spring and a viscous damper.  A time domain Kirchhoff-boundary element method 
is adopted to model the exterior acoustic fluid. Compatibility conditions on the structure-
fluid interface are taken into account in the analysis in order to achieve reasonable 
structural and acoustic responses of the system. For the coupled system under a harmonic 
force (excitation frequency 0f )  acting on the rigid body, significant peaks at 0f  
( 1,2,3,  ) are found in the frequency spectra of the structural responses of the 
cylindrical shell as well as the acoustic responses of the radiated sound pressure.  
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