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ABSTRACT 

Industrial noise can lead hearing loss for employees working in workshops. These losses 

can, in the end, be recognized as occupational deafness. In order to better control noise 

levels in industrial premises, it is necessary to focus on the interaction phenomena 

between the sound field and the walls of the premises, which may present a regular or 

irregular relief. In this work, we are interested in walls that contain geometric 

irregularities and focus in particular on predicting the sound pressure of the field 

diffused by rectangular parallelepipedic shapes. A theoretical model has been 

developed for this purpose. It consists in superimposing the different diffracted acoustic 

fields by the thin rigid rectangular plates that constitute the parallelepipedic shape. To 

do this, a combination of the image source method and the Kobayashi Potential 

Theoretical Model (KP) was implemented. The theoretical model was compared with 

the results of the numerical simulation (Finite Element Method) and the experimental 

results obtained in the semi-anechoic room of the INRS (French National Research and 

Safety Institute). Different geometric configurations were studied by changing the sizes 

and spacing between volumes. For most configurations, the acoustic pressure profile 

simulated by our model is comparable to the experimental and numerical data on a 

wide bandwidth (from 200 Hz to 2500 Hz). 
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2. INTRODUCTION 
 

Industrial premises are often delimited by relief walls (furniture, wall with periodic or 

aperiodic geometry, ...). This type of relief often contains rectangular parallelepiped shapes 

whose acoustic behaviour has to be studied to know the total sound pressure field in the local. 

This work consists in modeling the diffracted acoustic field by each rigid facing of 

rectangular parallelepipedic shapes representative of relief walls in order to determine the 

total reflected acoustic field. Thus, we combinated the Kobayashi Potential (KP) model [1] 

to determine the diffracted acoustic field on each rigid facing, and the image source method 

[2], to take into account the different acoustic fields reflected by the infinite rigid plane. The 

KP model has been already used to predict the scattering sound field over periodic facing 

walls containing rectangular cavities [3]. In our case, it is important to clearly distinguish the 

facets insonified by the source for which the KP model will be applied from those that are in 

the acoustic shadow region and for which no acoustic field will be taken into account. 

First, we will present the development of our theoretical model then, the experimental 

part that allowed the validation of the model on an elementary rectangular relief. Validation 

by the use of the Finite Elements Method was also carried out. 

  

2. THEORETICAL STUDY 

 Let’s consider an infinitely rigid large screen containing a rigid parallelepipedic shape 

which dimensions are (2𝑎, 2𝑏, 2𝑑)  along (𝑥, 𝑦, 𝑧)  axis respectively. The cartesian 

coordinate system (𝑂, 𝑥, 𝑦, 𝑧) is centered in the upper surface 𝑓0. Let Φ𝑖𝑛𝑐 be the incident 

plane wave. Φ𝑑 is the field diffracted by the parallelepipedic shape and Φ𝑟 is the specular 

reflected field by the infinite plane surface given by 𝑧 = −2𝑑 for |𝑥|> a and |𝑦|> b as 

shown in the figure 1. 

 The surfaces of the parallelepiped (𝑓0 ,𝑓1 ,𝑓2 ,𝑓3 ,𝑓4) are described by the plane equations 

written respectively as :  
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𝑧 = 0
𝑥 = 𝑎
𝑦 = 𝑏
𝑥 = −𝑎
𝑦 = −𝑏

 (1) 

 

 



 

Figure  1: Geometry of the problem 

The shape of the relief generates a shadow region around it (figure 1). In the figure, 𝑓3 

and 𝑓4 are included in the shadow region. This depends on the position of the source. In this 

region, the incident and the specularly reflected fields are equal to zero and the diffracted 

fields depends on which surfaces are insonified. Therefore, a calculation of the shadow region 

function has been achieved. It is expressed by the following formula: 
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where, H is the heavyside function, xs , ys and zs are the coordinates of the spherical source 

and 

0 in the shadow region

1  in the complementary 
( , , )

space
x y z


 


 

for {-2d ≤ z <0, |𝑥|>a, |𝑦|>b} {z ≥ 0,  x, y}  

The total acoustic field tot  above the wall includes the incident field 
inc , the specularly 

reflected field r  and the diffracted field d . It is written as follows: 

 

 
tot

inc r d     (3) 
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direct image

d d d    (4) 

d  is obtained by superimposing the direct diffracted field 
direct

d (insonified region) and 

image

d  which includes ,d r  (“diffracted then specularly reflected”) and ,r d  (“specularly 



reflected then diffracted”). 
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where i characterize the insonified surfaces.  

 

 Φ𝑖𝑛𝑐(𝑥, 𝑦, 𝑧) = 𝐴𝑒𝑗𝑘1𝑥𝑒𝑗𝑘2𝑦𝑒𝑗𝑘3𝑧 (6) 

  

 Φ𝑟(𝑥, 𝑦, 𝑧) = 𝐴𝑒𝑗𝑘1𝑥𝑒𝑗𝑘2𝑦𝑒−𝑗𝑘3(𝑧+4𝑑) (7) 

𝐴 is the amplitude of the incident field. 

The velocity potential 
i

d  of each surface must satisfy two boundary conditions on the 

planes defined in the equations (1). In the case of 𝑓0 for exemple, the boundary conditions 

are given by: 

               
𝜕

𝜕𝑧
(Φ𝑖𝑛𝑐 + Φ𝑑

0  ) = 0 for |𝑥| ≤ 𝑎, |𝑦| ≤ 𝑏 and z = 0   (8) 

 

               Φ𝑖𝑛𝑐 and Φ𝑑
𝑖  are continus for |𝑥| > 𝑎, |𝑦| > 𝑏 and z = 0   (9) 

Equation (8) means that the total acoustic velocity is equal to zero on the rigid plate. The 

condition (9) express the continuity of the potential functions outside to the plate in the plane 

z = 0. 

According to the KP method, the diffracted acoustic field is given by:  
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where 𝜉 =
𝑥

𝑎
, 𝜂 =

𝑦

𝑏
, 𝑘
→

 is the wave vector defined as 𝑘
→

= 𝑘1𝑥 +
→
𝑘2𝑦 +

→
𝑘3𝑧

→
, and  

 

 𝒜𝑚𝑛
0,𝜇,𝜈

=

{
 
 

 
 𝐴𝑚𝑛  

0 if (𝜇, 𝜈) = (0,0)

𝐵𝑚𝑛
0   if (𝜇, 𝜈) = (0,1)

𝐶𝑚𝑛   
0 if (𝜇, 𝜈) = (1,0)

𝐷𝑚𝑛
0   if (𝜇, 𝜈) = (1,1)

 (11) 

represent the modal amplitudes. 

 

The functions of 𝜉 and 𝜂  in the above equation are expanded in terms of Jacobi's 

polynomials then projected into the functional space of the same polynomials [4]. Then we 

obtain:            
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The general solutions for the potential function are given by the linear combination of 

m and n with the modal amplitudes. Thus, we obtain a system of four matrix equations as 

shown in (13): 

 [𝐴𝑚𝑛
0 ][𝐼(2𝑚, 2𝑛, 2𝑠 + 1,2𝑡 + 1)] = [𝐿(2𝑠 + 1,2𝑡 + 1)]  

 [𝐵𝑚𝑛
0 ][𝐼(2𝑚, 2𝑛 + 1,2𝑠 + 1,2𝑡 + 2)] = [𝐿(2𝑠 + 1,2𝑡 + 2)] (13) 

 [𝐶𝑚𝑛
0 ][𝐼(2𝑚 + 1,2𝑛, 2𝑠 + 2,2𝑡 + 1)] = [𝐿(2𝑠 + 2,2𝑡 + 1)]  

 [𝐷𝑚𝑛
0 ][𝐼(2𝑚 + 1,2𝑛 + 1,2𝑠 + 2,2𝑡 + 2)] = [𝐿(2𝑠 + 2,2𝑡 + 2)]  

where,  

 

 

𝐼(2𝑚 + 𝜇, 2𝑛 + 𝜈, 2𝑠 + 1 + 𝜇, 2𝑡 + 1 + 𝜈)

= ∬
ℝ+
2

J2𝑚+1+𝜇(𝛼)J2𝑢+1+𝜇(𝛼)

𝛼2
J2𝑛+1+𝜈(𝛽)J2𝑠+1+𝜈(𝛽)

𝛽2
√
𝛼2

𝑎2
+
𝛽2

𝑏2
− 𝑘2  𝑑𝛼𝑑𝛽

 (14) 

 and  

 

 𝐿(2𝑠 + 1 + 𝜇, 2𝑡 + 1 + 𝜈) = 𝑗1+𝜇+𝜈𝑘3𝐴
J2𝑢+1+𝜇(𝑘1𝑎)

𝑘1𝑎

J2𝑡+1+𝜈(𝑘2𝑏)

𝑘2𝑏
 (15) 

 

 The determination of the diffracted then specularly reflected field Φ𝑑,𝑟
0  is based on the 

image source method. This field is considered as it is was scattered from the image of 𝑓0 

behind the 𝑧 = −2𝑑 plane. In this case, the coordinates of the image source are (𝑥, 𝑦, −𝑧 −
4𝑑) (see figure 2).  

 

 

Figure 2: Illustration of the image source method 

The problem is solved by applying the same procedure used to calculate Φ𝑑
0  to the 

other insonified plates. The double integrals are devided in real and imaginary parts after 

transforming them into polar coordinates [5]. Then, for ,r d  the incident field is supposed 



r (source-mage method) and ,d r is considered like it is diffracted from the imaginary 

surface symetric to the appropriate real surface. 

3  Experimental process 
 

3.1  Description of the experiment 

 The experiment was achieved in the semi-anechoic chamber of the French National 

Research and Safety Institute for the Prevention of Occupational Accidents and Deseases 

(INRS). The parallelepipedic blocks were made of tiled polystyrene in order to model the 

total reflection of the incident wave.  

The experience was achieved using the following equipment:   

    • Pioneer loudspeaker TSE1077 type and 8cm in diameter,  

    • B&K 1405 noise generator,  

    • Fifteen B&K 4935 microphones of 1/4 inch,  

    • B&K 2694 Deltatron conditioner,  

    • Power APK 2000 amplifier,  

    • GQ 1031 Equalizer.  

 

A source was suspended above the wall facing. It was linked to the generator that 

emits white noise through the equalizer and the amplifier. The measurements were made 

along a line of 45 microphones spaced by 5.5 cm. For this, we used an antenna of 15 

microphones positioned three times along the 𝑥 axis (figure 3). 

 

 
Figure  3: Experimental procedure 

 

In order to have the same source in the experiment and our model we decomposed the 

spherical wave into a plane wave spectrum [6].  

The measured acoustic pressure profiles are normalized with respect to the signal of the 



central microphone in order to compare clearly the numerical and the experimental results 

independently of the real source power. 

 

3.2 FEM Modeling 

 
In this model, we used COMSOL (4.2) for modeling experience. The figure 4 shows a 

representation of our model. To simulate a perfectly reflecting wall, we used steel. We 

applied the boundary conditions on the outgoing block and floor to eliminate any structural 

vibration. To simulate an open field, we applied perfectly Matched Layer PML edges. A 

source is placed above the study structure. A pressure profile will be obtained above the 

structure for different frequencies. 

 

                                    

Figure 4 : FEM representation 

 

3.2  Results and comparisons 
 

Figure (5) shows a comparison between the sound pressure amplitudes obtained for the 

analytical model and the experiment for the frequencies 250, 800, 1400 and 1700 Hz. The 

results were obtained for an elementary rectangular parallelepiped of (0.52 × 0.34 ×
0.2)𝑚3  in dimensions. A second validation was carried out for the same relief but by 

inverting the dimensions along (Ox) and (Oy) axis (0.34 × 0.52 × 0.2)𝑚3. The figure (6) 

presents the corresponding comparisons for 250, 500, 800 and 1400 Hz, between the results 

obtained with our model, the experiment and Finite Element Method. In both case, the 

pressure profiles have been divided by the pressure module obtained at the microphone array 

center. These profiles correspond to a configuration performed where the source and the 

sensors are located at 1.45 m and 0.4 m respectively above to the wall (𝑧 = −2𝑑). 
For this type of elementary relief, a good agreement between the analytical model and the 

experimental results has been observed for the different frequencies tested. The Finite 

Element Method shows limitations in high frequencies. 

For both configurations, we remark some disagreement between the compared results in the 

extremities of the pressure profiles. This can probably be explained by the analytical 

boundary condition in which the rigid plane is supposed infinetly large (no edges). In 

addition, the source is supposed to be spherical in the decomposition process to plane waves, 

but it is not perfectly spherical in reality. 



 
Figure 5: Normalized acoustic pressure at 0.4m above a relief of (0.52 × 0.34 × 0.2)𝑚3 

 

 

 
        Figure 6: Normalized acoustic pressure at 0.4m above a relief of (0.34 × 0.52 × 0.2)𝑚3 

 



4.  CONCLUSION 

 
The diffraction of acoustic field by a wall facing containing a parallelepipedic shape 

was evaluated for different dimensions and frequencies. The KP and image source methods 

was used as theorical models. For most configurations and despite some low differences 

observed between the theoretical results and the experimental and numerical data, the model 

developed is promising. 

This study will be generalized to the case of gratings of rectangular parallelepipedic 

shapes. Parallel and non parallel configurations will be studied. An analysis of the model 

with and without coupling between the blocks leads to understand the influence of the 

frequency and the spacings between them. 
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