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ABSTRACT

Direct noise computation (DNC) offers some advantages compared to hybrid
approaches in simulating aeroacoustic mechanisms. In DNC, hydrodynamics
and acoustics are solved in a coupled manner which allows to depict intricate
interactions between both fields. However, this approach intrinsically requires
the resolution of the occurring disparate length and time-scales. Our open-source
Discontinuous Galerkin framework FLEXI, has been successfully applied to this
multiscale problem. The aim of this paper is to draw the attention to an efficient
method for the detection of aeroacoustic feedback. Aeroacoustic feedback can
be effectively predicted by a global stability analysis. Here, an impulse response
analysis on a time averaged flow field is carried out. The underlying baseflow is
maintained constant through volume forcing terms. To overcome the drawback
of long time-averaging of LES-data, the question arises if a computationally less
expensive numerical method, ideally a RANS-solver, can be employed to generate
the time-averaged baseflow which is then used by FLEXI to simulate the response of
small perturbations. Results of a side-view mirror will demonstrate the advantages
of the latter approach. In summary, this paper will introduce an efficient method to
depict aeroacoustic feedback within our framework FLEXI with regard to future
industrial use.
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1. INTRODUCTION

The industry is already successfully using acoustic simulations in the development
process. Nowadays broadband noise can be predicted well and also with high efficiency
using hybrid simulation methods. Narrow band noise, which often occurs in flow
around sharp-edged bodies or notches, however, cannot be depicted by the standard
approaches. Therefore, up to this day the development process in industry relies strongly
on empiricism and experiments. As an example concerning acoustic feedback there is
the side-view mirror. With its smooth surface and the positioning within freestream
condition promotes the development of tonal noise.

Several works dealing with tonal noise investigated trailing edge noise at the example
of the NACA 0012 airfoil [1], [2], [3]. Lounsberry et al. [4] suggested that the tonal noise
seen at smooth surfaces is based on the same mechanism. The mechanism is associated
to laminar boundary layer separation and the associated coherent vortex shedding. Within
the developing shear layer instabilities are amplified and eventually roll up to coherent
vortices. The interaction of those structures with the trailing edge leads to acoustic
radiation. The upstream travelling acoustic wave interacts with the shear layer trough
receptivity and excites instabilities at a certain frequency. This mechanism can trigger a
self-sustaining oscillatory state at certain frequency, which is the source of tonal noise.

The described interaction between hydrodynamics and acoustics is the reason why
state of the art computational aeroacoustic solver can’t predict acoustic feedback. To
depict aeroacoustic feedback direct noise computation (DNC) is necessary. Frank [5]
successfully demonstrated the occurrence of aeroacoustic feedback on a side-view mirror
by applying DNC. However, this approach intrinsically requires the resolution of the
disparate length and time-scales of non-linear turbulent production and the acoustic
propagation. Furthermore, he applied a global stability analysis to detect acoustic
feedback proposed by Jones et. al [3]. Here, an initial time averaged flow field obtained
from compressible high-fidelity large eddy simulation (LES) is disturbed by a small
perturbation, while the underlying baseflow is maintained through volume forcing terms.
The whole procedure stays computationally expensive if a high-fidelity simulation is used
to acquire the time-averaged baseflow since long time-averaging intervals are necessary
to achieve statistical convergence. To overcome this drawback, we propose a more
efficient method by the use of a less expensive numerical method, based on the Reynolds
averaged Navier-Stokes equations (RANS), to generate the time-averaged baseflow. We
apply this method to a simplified side-view mirror and will demonstrate the applicability
of the of this approach.

This paper is structured as follows. Section 2 introduces the numerics essential for this
work. Section 3 describes the numerical setup used for the simulations. Results based
on this framework are discussed in the following two chapters, Section 4 and 5. Finally
section 6 ends with concluding remarks.

2. NUMERICAL METHOD

The mechanism of acoustic feedback is based on an complex interaction between
the hydrodynamics and the acoustics which requires a direct numerical simulation of
the compressible Navier-Stokes equations (NSE). Such multiscale problems have strong
requirements on the numerical scheme. In recent years, high order Discontinuous
Galerkin (DG) methods have gained significant attention as baseline schemes for



multiscale problems. Due to low numerical approximation errors and excellent high-
performance computing capabilities, they have been successfully applied to large
multiscale simulations. However, this multi-scale problem still is very resources
intensive, expensive and not feasible for large scale application in the industry.

The following sections summarizes the discontinuous Gelerkin spectral element
method (DGSEM) implemented in our framework FLEXI as described in Hindelang at.
al [6], the global stability analysis and briefly introduces the numerics of the underlying
used FV solver.

2.1. Discontinuous Galerkin spectral element method

We consider the compressible NSE which are the governing equation for a
compressible, viscous fluid in motion which intrinsically includes the hydrodynamics
and acoustics. Expressed in the conservative form and written in terms of the vector of
conserved quantities U = (ρ, ρv1, ρv2, ρv3, ρe)T , where ρ denotes the density of the fluid,
~v = (v1, v2, v3)T the fluid velocity vector and e the specific total energy, the NSE are

Ut + ~∇x · ~F(Ux, ~∇xU) = 0. (1)

To numerically solve this system of equations with the DGSEM, the physical domain
is discretized with three-dimensional, non-overlapping hexahedral elements. For a better
representation of the geometry we use curved elements and for easier meshing we allow an
unstructured mesh topology. Each element is mapped from the physical space to the unit
reference element E = [−1; 1]3 with coordinates ~ξ = (ξ1, ξ2, ξ3)T . The metric terms are
chosen according to Kopriva [7] to ensure the so-called free-stream preserving property.
The transformed NSE reads as following

J(~ξ)Ut + ~∇ξ · ~F (U, ~∇xU) = 0, (2)

where J = det(∂~x
∂~ξ

) is the Jacobian determinant of the mapping ~x(~ξ) and ~F the transformed
difference of advection and viscous fluxes. The variational form is obtained by projecting
Equation (2) onto a test function φ, which is chosen in the Galerkin approach identical
to the basis function. Integrating over the reference element E and integration by parts
yields the weak formulation of the DGSEM

∂

∂t

∫
E

JUφ d~ξ +

∮
∂E

(G∗n −H
∗
n )φ ds −

∫
E

~F (U, ~∇xU) · ~∇ξφ d~ξ = 0, (3)

where G andH denoted numerical flux function normal to the surface for the inviscid and
the viscous term respectively. As basis for the solution vector we choose a tensor product
of 1-D Lagrange polynomials lN

i of degree N,

U(~ξ, t) =

N∑
i, j,k=0

Ûi jk(t)ψN
i jk(~ξ) , ψN

i jk(~ξ) = `N
i (ξ1)`N

j (ξ2)`N
k (ξ3) , (4)

where Ûi jk(t) is the time-dependent nodal degree of freedom. Using the (N+1)3 Gauss-
Legendre quadrature points both for integration and interpolation yields a collocation
approach following Kopriva [8]. To determine the inviscid surface flux the Roe Riemann
solver with entropy fix [9] is used to obtain the numerical fluxes depending on the values
at the grid interface. The viscous flux is approximated by the lifting procedure by Bassi



and Rebay [10]. As time integration scheme the low storage fourth order explicit Runge-
Kutta method of Carpenter and Kennedy [11] is applied.

The treatment of the boundaries is crucial when dealing with acoustics. To prevent
artificial reflections of acoustic waves as well as of the turbulent flow structures we use
a sponge zone proposed by Pruett [12] as well as boundary conditions of Dirichlet type
in weak form. Further details about the implementation and the acoustic properties of the
DGSEM can be found in Flad et. al [13].

2.2. Global perturbation simulation

To reduce computational cost in predicting aeroacoustic feedback compared to DNC,
we apply, according to Jones et. al [3] and Frank [5], a simple perturbation formulation.
The following method can be easily implemented into the high-order method described
above. The nonlinear Navier-Stokes operator reads as

Ut = R(U). (5)

Inserting the Reynolds decomposition which reads as U = U0 + U′ and rearranging the
equation leads to

U′t = R(U0 + U′) − R(U0). (6)

The second part of the right-hand side of Equation (6) represents the base flow time
derivative. Subtraction of the former in each time step can be interpreted as a forcing
back onto the baseflow. This method allows us to analyze the impulse response of a
small perturbation to any provided baseflow, which is like a global stability analysis. The
analysis of the obtained time series gives insight into the dynamics of the system and
allows us to reveal acoustic feedback. Decomposing the time series into approximate
global instability modes by applying a dynamic mode decomposition (DMD) reveals the
least damped global instability mode which is associated to the characteristic acoustic
feedback mode. The DMD algorithm used is based on Schmidt [14].

2.3. RANS solver

As stated in the previous section any baseflow can be chosen for the high fidelity
perturbation analysis. This gives us the possibility to achieve an efficient method for
predicting aeroacoustic feedback. In this work we choose the library OpenFOAM R©,
more precisely the simpleFoam solver, which is a steady-state solver for incompressible,
turbulent flow, using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations)
algorithm. The algorithm solves the incomrpessible RANS equations using a finite
volume (FV) method. A turbulence model is used for closure. Furthermore, the
algorithm follows a segregated solution strategy meaning that the unknown variables,
which are the velocity, pressure and the turbulence variabales, are solved sequentially.
More information about the SIMPLE algorithm and the FV method can be found in
Ferziger [15].

In this work the RANS equations are closed by the Langtry-Menter 4-equation
transitional SST model. The model is given by the four equations for the turbulent
kinetic energy, the specific turbulence dissipation rate, the intermittency and one for
transition onset criterion in terms of momentum-thickness Reynolds number. The
model coefficients are chosen to be equal to the default values as implemented into the
OpenFOAM R© release v1712. Details of this turbulence and transition model can be
found in [16], [17] and [18].



2.4. Coupling strategy

This section is dedicated to explaining the strategy of the perturbation analysis applied
in this work. As mentioned we can choose any baseflow for the perturbation analysis.
Choosing the state-of-the art CFD-library OpenFOAM R© for generating a suitable
baseflow unavoidably leads to a consideration of different solution representations and
file formats. The DGSEM relies on a tensor product of 1-D Lagrange polynomials for
the solution representation, whereas OpenFOAM R© follows the finite volume typical
cell-centered solution representation. The basic idea for the coupling mechanism is
derived from sub-cell methodes used for shock capturing procedures described e.g.
by Sonntag [19]. Here, a DG reference element is split into equidistant FV sub-cells
with the same amount of degrees of freedom, which is (N + 1)2/3 for each cell in the
two- respective three-dimensional case. The transformation between the DG and the
FV sub-cell formulation describes the desired transfer from DG to FV and vice versa.
By converting the FV sub-cell mesh into the OpenFOAM R© native polymesh format,
maintaining the original mesh structure, and computing the baseflow on this mesh allows
us to easily transform the FV solution to the DG polynomials. To do so, the solution on
the FV sub-cells in the physical space are transformed back into the reference element
and the conversion is carried out. For a rectilinear grid this method can be directly
applied. In this case the OpenFOAM R© barycenters transformed to the reference element
coincide with the barycenters of the FV sub-cells in the reference element. In case of
skewed elements or even curved meshes the barycenters of the polymesh differ from the
FV sub-cells due to the fact of different estimations of the barycenters. For this more
general case a correction is carried out. To do so, the reference coordinates describing
the physical coordinates of the polymesh barycenters within the reference element are
searched with Newton’s method. The correction is now applied by interpolating to the
expected barycenters of the FV sub-cells using the Lagrange polynomials of degree N.

The proposed strategy offers quite a lot of flexibility. It is possible to overcome the
restriction of only using hexahedra elements by carrying out the baseflow simulation on
an arbitrary mesh and map the solution on the polymesh derived from the DG mesh. The
presented coupling strategy is summarised in Figure 1.

Figure 1: Coupling strategy between OpenFOAM R© and FLEXI.

3. COMPUTATIONAL SETUP

The simplified side-view mirror model described by Frank [5] and Werner [20] is
considered as a test example for the proposed method. This mirror is an abstraction



mimicking the pressure distribution of a real side-view mirror on which aeroacoustic
feedback was detected. The defining feature was found to be the so called "design
edge" on top of the modelwhich induces laminar separation. The length of the model is
C = 70.17 mm. A splitter plate, with length L/C = 8 is mounted central at the rear of the
body to calm the wake. Without the splitter plate vortex shedding at low frequency can be
observed which dominates the flow and no tonal noise component is present. We consider
in the following two setups, the first one is used as validation of the second setup, which
represents the new method presented here. The validation setup follows Frank [5] and
consists of three steps. The first step is a baseflow LES of the whole domain followed by a
well resolved submodel simulation, with boundary conditions enforced by the computed
baseflow. The third step is carrying out the perturbation analysis on the time-averaged
summodel simulation. To correctly represent the pressure distribution on the body
surface it is crucial to depict the turbulence adequately. Therefore, the full domain
simulation is carried out three-dimensional. The following submodel simulations, which
are better resolved to capture the instability mechanism, are carried out two-dimensional
in order to reduce computational cost, knowing from Jones et. al [3] and Frank [5] that
a two-dimensional simulation is capable of depicting the feedback mechanism which is
dominated by coherent two-dimensional flow structures.

The setup of the new method proposed follows step one and three. In the first step a
well resolved time-averaged flow field is obtained by solving the RANS equations. Here,
a two-dimensional simulation is executed directly to gain the baseflow. The second step,
which is mapping the time-averaged flow field onto the submodel, transforming the FV-
data to DG-polynomials and carrying out the perturbation analysis, is computed with
DGSEM.

Figure 2: Computational meshes. Left: mesh of the RANS simulation, middle: mesh of
the DG simulation, right: mesh used for the submodel simulation.

3.1. Baseflow

The baseflow simulation for the high order case is carried out a the baseline freestream
velocity of U∞ = 27.78 m/s. A section of the grid used for computation is displayed
in Figure 2 (middle). The domain is circular with radius R = 100C and has a spanwise
extend of Lz = 42.1m for the three-dimensional simulation. The spanwise extend is
chosen according to Frank [5] which has been shown to be large enough to prevent
spanwise correlation. The grid comprises of approximately 122,000 elements and is
discretized with 16 equidistant layers in spanwise direction. The polynomial degree
of the DGSEM approximation is chosen to N = 5 and the geometry is represented by
NGeo = 4. This results in about 26.4 m. degrees of freedom. The grid spacings, defined as
∆[·] = ∆[·]cell/(N + 1), evaluated at the design edge are the following: ∆x = 0.32 mm and



∆y = 0.036 mm. To suppress artificial reflections a circular sponge zone with radius
R/C = 20 is placed around the body. In the spanwise direction periodic boundary
conditions are applied.

For the new proposed approach baseflow simulations are carried out with a RANS
solver. Several freestream velocities between U∞ = 10 m/s and U∞ = 27.78 m/s are
computed. The computational grid is displayed in Figure 2 (left) and is based on the same
circular domain as mentioned above. The grid is made up of about 856, 000 cells. The
near wall region is fully resolved with a near wall grid resolution yielding y+ < 1 on all
surfaces. To ensure a smooth solution representation after switching to the polynomial
solution representation, regions with expected high gradients are refined. By the use of a
turbulence model we are able to conduct immediately a two-dimensional simulation.

3.2. Submodel

The setup of the submodel simulation is independent of the choice of the baseflow
and will be carried out with the presented high order DGSEM. In order to reduce
computational cost a two-dimensional submodel simulation is carried out. The grid of
the submodel is displayed in Figure 2 (right). To capture the dynamics of the instability
mechanism the resolution is increased by p-adaption, the polynomial degree is set to
N = 7. The mesh resolution of the submodel region itself is comparable to the baseflow
case. The vicinity of the boundary to the body requires careful treatment of the boundary
conditions. The time average of the baseflow simulation provides the far field boundary
conditions as well as the reference flow for the sponge region. This ensures a damping of
the fluctuations towards the reference solution and prevents artificial reflections.

4. FULL MODEL SIMULATION

The discussion of the full model simulation is based on the baseline case of
U∞ = 27.78 m/s. We want to compare the results based on the DGSEM method with
the FV method. For validation we compare the results with the data published by
Frank [5]. To compare the transient simulation with the steady state solution obtained
from the RANS equations we average the transient data in time. For the transient
simulation the flow field is initialized with the freestream velocity of U∞ = 27.78 m/s.
Therefore, before time averaging the simulation is advanced for 20 convective time units
T ∗ = C/u∞ and then averaged over 180T ∗. Comparison of the length of the recirculation
bubble on the top of the splitter-plate shows in comparison to the time average of
the resolved simulation that the RANS simulation underestimates the length of the
recirculation bubble. The length of the time averaged solution is L/C = 6.97 compared
to L/C = 5.77 of the RANS solution. The difference is attributed to the discrepancy
between two-dimensional and three-dimensional simulation as well as differences in
the resolution capabilities of the models used. The resulting influence on the pressure
distribution on the upper side, on the other hand, is minor. In Figure 3 the pressure
coefficient of the upper side of the model is plotted as well as the results of Frank [5].
Both simulations reflect the trend of the pressure distribution very well. The location of
the suction peak match very well the location of the design edge at XDE/C = 0.67. The
RANS simulation overestimates the strength of the suction compared to the reference.
This is accounted to the underestimation of the length of the recirculation bubble above
the splitter plate. During the formation of the recirculation zone, it can be observed



that the pressure distribution on the upper side decreases as the recirculation zone
grows larger. The suction peak is followed by a plateau of nearly constant pressure
distribution, indicating the presence of a separation. Looking at the separation point,
defined by change of sign of the wall shear stress, yields X/C = 0.765 for the high-fidelity
simulation and X/C = 0.763 for the RANS simulation. A variation of the freestream
velocity was carried out for the RANS simulation. The additional freestream velocities
U∞ = 10 m/s, 15 m/s, 16.25 m/s, 17.5 m/s, 20 m/s, 22.5 m/s and U∞ = 25 m/s were
computed.

Figure 3: Time averaged pressure coefficient cp on the mirror surface.

5. SUBMODEL SIMULATION

In the following the submodel simulation with the DGSEM for the baseline velocity
U∞ = 27.78 m/s is discussed. The submodel simulation is carried out acording to Section
3.2. As initial solution the time averaged solution of the full model is mapped to the sub
model and chosen as a baseflow for the sponge zone as well as the far field boundary
condition. At first the initial solution is advanced for 70T ∗. From there on the acoustic
emissions at X/C = 1,Y/C = 1.5 are recorded as well as time averaging is performed.
The time averaged flow field is used afterwards as baseflow for the perturbation analysis
described in the next section. The resulting acoustic spectrum is displayed in Figure 4.
Displayed is the pressure spectral density in comparison to the reference of Frank [5]. In
the spectrum there is a dominant peak at about 2560 Hz. This peak is associated to the
aeroacoustic feedback mechanism. In comparison to the results of Frank there is a slight
shift to higher frequencies noticeable as well as a slight shift towards higher spectral
density, but over all there is good agreement of the spectra. The results of the spectra
of the direct noise computation should now be seen as the reference for validation of the
perturbation analysis in the following section.

5.1. Perturbation analysis

Based on the full model simulation with the RANS solver and the time averaged flow
field of the submodel simulation, we want to carry out the perturbation simulation on
the submodel. We analyze the temporal dynamics of the impulse response triggered by
the introduced disturbance with the DMD. We compare the results based on the two
different baseflows and validate it against the direct simulation. Furthermore, we want
to examine whether the dependence of the tonal frequency on the freestream velocity



Figure 4: PSD of the pressure fluctuations at (1, 1.5), pre f = 4 · 10−10Pa2/Hz (left).
Pressure fluctuation p′ = p − 〈p〉 contours (right).

can be depicted by the proposed new method. For the perturbation analysis the equation
described in Section 2.2 is solved by the DGSEM method. As an initial perturbation a
sharp-edged perturbation, in order to excite a wide range of wavelengths, with amplitude
of 10−8 is introduced into the initial momentum und density field. In Figure 5 the pressure
fluctuation within the near wall boundary triggered by the introduced perturbation is
shown. In this case the baseflow was computed with the RANS solver. The figure reveals
two effects. At first the wave packet, triggered by the perturbation, travels downstream.
The triggered hydrodynamic wave packets are dominant on the rear of the geometry.
The second effect is the acoustic wave travelling upstream with lower amplitude in
comparison. The figure further shows a stable feedback loop meaning the upstream
travelling acoustic waves trigger new wave packages with increasing amplitude.

Figure 5: Pressure fluctuations plotted within the boundary layer (arbitrary amplitude).

In the following the associated time series is analyzed by the means of a DMD. A time
series of 5T ∗ with ∆t = 0.01 is analyzed. The results are presented in Figure 6. Besides
the presented perturbation analysis, the perturbation analysis of the reference simulation
is presented, which in the following will be referred as the reference. In the diagram you
can see the real part plotted over the imaginary part of the complex eigenvalues ω which
are associated to the growth rate and the angular frequency of the mode. The color and
size of the plotted modes are encoded with the Euclidean norm of the respective mode
which can be seen as a measure of energy of the modes.

Direct comparison of both results shows good agreement in terms of matching



Figure 6: Spectrum of Ritz values delivered by the DMD algorithm based on the
perturbation simulation in the time interval 0 ≤ t ≤ 5. Size and color coding indicate
the Euclidean norm of the respective mode. Left: baseflow computed with DGSEM, right:
baseflow computed with RANS.

frequencies of the dominant modes. A slight shift towards higher growth rates is
noticeable for the new approach. This indicates a dominant influence of the geometry to
the frequency selection and a great influence of the detailed boundary layer properties
towards predicting the physical damping rate. In Table 1 the frequencies of the least
damped energetic modes as well as the adjacent modes are listed. Compared to the
dominant tonal frequency found in DNC at f = 2550 Hz, the results of the DMD are
in good agreement with the dominant frequency found in the perturbation analysis.
Compared to the results published by Frank [5] the same frequency shift was found as
in the DNC, but comparison of the deltas of the adjacent frequencies demonstrates again
good agreement.

f [Hz] M1 M2 M3
Reference 1956 2567 3183
New approach 1959 2555 3195
Frank [5] 1917 2525 3145

Table 1: Dominant frequencies obtained from DMD.

Those promising results for the baseline velocity shows great potential of the new
proposed method. In the following we want to present the results of the variation of the
freestream velocities. In Table 2 the frequencies of the least damped modes found by
DMD of the perturbation analysis are listed. For comparison the tonal frequencies found
by frank with DNC are listed as well. The overall trend is reproduced well. Towards lower
velocities the deltas of the frequencies increase slightly to a maximum difference of 66 Hz.
For the case of U∞ = 10 m/s the mode structure as seen in Figure 6 collapses and no mode
which would refer to an aeroacustic feedback mode is present. The corresponding spectra
provided by Frank doesn’t show any peak frequency as well.

f [Hz] 10 m/s 15 m/s 16.25 m/s 17.5 m/s 27.78 m/s
Perturbation analysis - 1440 1570 1680 2555
Frank, DNC [5] - 1506 1633 1720 2519

Table 2: Comparison of the feedback frequencies found by perturbation analysis with
DNC results of Frank [5] for a variation of the freestream velocity.



6. CONCLUSIONS

The present work deals with an efficient method to capture aeroacoustic feedback
induced by the flow around a side-view mirror. Based on a simplified geometry, that has
already been investigated intensively for feedback, a global perturbation ansatz based on a
baseflow obtained from a RANS solver is proposed. The potential of the stability analysis
has been demonstrated in the past by Jones et. al [3] and Frank [5], with the downside of
computationally expensive time averaging of transient LES or DNS to obtain the baseflow.
Through the use of a RANS solver to compute the baseflow the computational effort
reduces significantly.

A direct simulation was carried out at the baseline velocity of U∞ = 27.78 m/s to have
an acoustic spectrum for validation as well as to be used as a reference baseflow in order
to obtain a reference perturbation analysis. Conducting a two-dimensional perturbation
analysis of a sudmodel based on the RANS baseflow as well as the reference baseflow,
followed by a dynamic mode decomposition reveals the selection of discrete frequencies
by the mechanism. There was found good agreement of the least damped modes with
the tonal frequency found by DNC as well as the literature. This leads to the conclusion
that RANS simulations are suitable as baseflow for a high order disturbance analysis. To
summaries, the proposed method is a first step to facilitate the prediction of aeroacoustic
feedback in an industrial context.
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