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ABSTRACT 

This paper reports on the use of neural networks for modelling the relation between 

the salient objective and subjective psychoacoustic attributes of a propeller aircraft 

interior sound. The developed model grounds on a modular approach consisting in 

a series of two stages. The first stage is devoted to the data-driven estimation of 

sound quality features (loudness, sharpness, etc.) in time domain. In the second stage 

the estimated sound quality attributes are adopted to classify the input sounds in 

terms of passenger annoyance. This second module consists in an Artificial Neural 

Network model, trained on the basis of a subjective evaluation test. The paper 

describes the approach followed for the neural networks definition and for the 

collection of the subjective and objective propeller aircraft in-cabin psychoacoustic 

attributes. The adopted model has been compared with alternative machine learning 

instruments. We finally assessed the accuracy of the model in predicting the 

passenger response by validating it on experimental propeller aircraft in-cabin noise 

recordings whose annoyance was evaluated by a pool of jurors in a subjective 

evaluation test. Such a tool, integrated in a virtual prototyping framework, paves 

the way for the inclusion of the human perception in the aircraft design optimization 

process. 
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1. Introduction 

 

The assessment of a propeller aircraft acoustic discomfort often occurs in the late 

stages of its development cycle. This makes it difficult to intervene to improve the 

resulting Sound Quality characteristics because many design parameters have already 

been fixed. Therefore, very often, the interior noise of an aircraft is only optimized 

regarding the Sound Pressure Level reduction the passenger acoustic discomfort, i.e., 

annoyance, is disregarded. The development of a prediction model able to, directly from 

pressure signal, quantify the human perception of sound enables the inclusion of 

subjective acoustic features in the early stages of the aircraft design process. 
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2.  Sound Quality Prediction in a Propeller Aircraft 

 

2.1 Overview 

 This paper analyses the prediction of Sound Quality characteristics in a propeller 

aircraft. Two flying conditions for this aircraft were held into account. The case when 

both propellers have a control system which tries to ensure coincident rotational 

frequencies is denominated by synchronous and the asynchronous case where no such 

control is active. Interior acoustic measurements have been carried out in the studied 

propeller aircraft during the cruising phase. Both for synchronous and asynchronous 

conditions, the noise was recorded in numbered positions of the aircraft, i.e. seats (1). In 

previous works, using these recordings, an algorithm was developed to, from a virtual 

model of the aircraft with changeable parameters, synthesize the sound sample 

corresponding to any position in the interior of the cabin, with the possibility of changing 

several design parameters of the virtual model. Therefore, it is possible to reproduce and 

study the interior noise in each typical propeller aircraft, without having to re-record 

sound samples in a flight. Consequently, the sound samples used for this paper were 

synthetized from a virtual model of a propeller aircraft. These samples were synthetized 

for both synchronous and asynchronous flying conditions, in 85 positions for each case, 

hence a total of 170 samples (2). For each sound sample, five psychoacoustic metrics 

were computed using Simcenter Testlab: Loudness, Sharpness, Tonality, Fluctuation 

Strength and Roughness. A spatial mapping of each one of these features can be seen in 

Figure 1. Also, these metrics were the subject of a k-means clustering analysis that 

allowed to, in a high dimensional group of data, find groups (i.e. clusters) with similar 

features (2). Four clusters of seats were obtained for each flying case (Figure 2).  

 

Figure 1: Spatial Distribution of the psychoacoustic metrics in the cabin of the aircraft. 

 

Figure 2: Distribution of the clusters in the cabin of the propeller aircraft (2). 



2.2 A Data-driven Modular Approach for Sound Quality Prediction 

 In this paper, we developed a Virtual Passenger model with a modular approach 

for predicting Sound Quality in a propeller aircraft, where, in the first module, using 

Convolutional Neural Networks (CNNs), a prediction model was built by training the 

CNNs for predicting psychoacoustic metrics, directly from pressure signals. On the 

second module, the goal is to predict the passenger’s acoustic discomfort, i.e., annoyance, 

in all the positions of the cabin in a propeller aircraft, where the input will be the 

psychoacoustic metrics predicted by the first module (Figure 3). For training this second 

module of the model, it was necessary to conduct a jury test campaign for collecting 

annoyance assessments from a pool of jurors. Pairing these evaluations of each sound 

sample with their corresponding psychoacoustic metrics, we used and compared different 

regression-based Machine Learning techniques for building the second block of the 

model. 

 
Figure 3: Block diagram describing the Virtual Passenger model.  

2.3 Estimation of Psychoacoustic Features in Time Domain  

 The first module of the Virtual Passenger uses CNNs, which is a Machine Learning 

technique able to process data in its natural form. Therefore, the manual feature extraction 

step is bypassed, allowing to develop a pipeline where it is possible to directly predict 

acoustic discomfort from pressure signals. CNNs are able to recognize spatially or 

temporally invariant features from time-domain waveforms (3, 4, 5, 6). Also, the use of 

different psychoacoustic features guides the model in perceiving the different dimensions 

that will later be required for predicting Sound Quality. Such an end-to-end, data-driven, 

approach allows to overcome the need to compute semi-analytical algorithms for the 

extraction of the required psychoacoustic features (7, 8, 9, 10, 11). This simplifies the use 

of the predictive model in contexts such as multi-attribute optimization or control loops. 

  

2.4 Bayesian Optimization 

 Adjusting the different available hyper-parameters represents one of the biggest 

challenges of using Machine Learning techniques, being this an often manual task that 

can require rules of thumb or even to conduct grid-searches (12). As shown in (13), 

Bayesian Optimization, by constructing a probabilistic model based on the Bayes 

theorem, outperforms other state of the art global optimization algorithms (14) because it 

is able to use the information available from previous evaluations of the objective function 

being used, and not simply rely on local gradient and Hessian approximations. Even 

though the evaluations of the objective function are expensive to perform, the ability to 

make better decisions justifies the extra computation cost (12).  

 

2.5 Subjective Assessments of Sound Quality in a Propeller Aircraft 

Acoustic discomfort, measured through annoyance, can be assessed by means of 

questionnaire items by appropriate response scales. We assessed the subjective perception 

of annoyance of the passengers in a propeller aircraft by asking a pool of jurors to perform 

a subjective evaluation test on a sample of the synthetized sound samples. After a one-

week campaign, a total of 40 jurors evaluated the sample of sounds, in sessions of no 

more than 6 jurors at a time. For this campaign, the guidelines from (15) were followed.  



For avoiding juror fatigue, a sample of 30 sound samples, with lengths of 6.5 

seconds, were selected from the total of 170 pressure signals available. Considering the 

features of the sounds samples were clustered (as shown in 2.1), a sound sample was 

selected from each of the clusters. Also, the extreme cases for each psychoacoustic metric 

were selected, for ensuring the sample is representative. Finally, as suggested by Otto et 

al., a screening of the sound samples was done. The consistency of juror evaluations was 

checked by including 5 repeated sound samples. It should also be noted that all the sound 

samples were equalized to improve the sound quality during the test and fade in and fade 

out effects were included, for softening the start of the sound samples (15). The Semantic 

Differential method with a seven-point scale was used, where sound samples are 

presented one by one to the jurors, who has to rate them based on a pair of two opposing 

adjectives or expressions. However, it should be noted an anchor sound was used, i.e., 

before the juror listens to the sound sample he is assessing, he will first hear an anchor 

sound, which will be always the same sound. The anchor sound was selected by choosing 

a seat with average feature, thus seat number 38 (synchronous), located in the middle of 

the fuselage was the one chosen. This ensures the juror always has the same reference 

sound, increasing consistency. 

  

2.6 Feature-based prediction with Machine Learning 

 Even though there is a high correlation between some psychoacoustic metrics and 

annoyance, the use of one single metric does not allow to model acoustic discomfort. A 

combination of features is necessary for building a model able to correlate psychoacoustic 

features with results from jury studies (16). 

 A comparative study between 4 different prediction techniques. A Multiple Linear 

Regression (MLR) allows to explain phenomena trough the combination of different 

variables (17), although being a linear technique which is a shortcoming when addressing 

strongly nonlinear regression (16). A more fitting approach is the use of a multilayer 

perceptron-based model, designated by Artificial Neural network is a common technique 

for non-linear modelling, where, the network training corresponds to the iterative process 

of computing the network parameters which minimize its error (4).  Numerous training 

techniques can be used. The Levenberg-Marquardt (LM) algorithm (18) and the Bayesian 

Regularization (19) are two common ones and will be explored in this paper. Support 

Vector Machines (SVMs), a kernel-based method, corresponds to a statistical learning 

approach based on risk minimization principle and are also able to effectively model these 

phenomena (20, 21). Finally, the combination of several decision trees as a Random 

Forest (RF) will also be used for this type of nonlinear modelling (4). Similarly to the 

CNNs, the Machine Learning techniques above mentioned, have adjustable hyper-

parameters. Bayesian optimization can also be a key tool when for having an automated 

way to perform this adjustment, enabling extensive robust performance assessment 

studies. However, ANNs parameters are a frequent target of manual hyper-parameter 

adjustments, where the number of hidden neurons or training algorithms can be carefully 

chosen and impact prediction performance (22). 

 

3.  Assessment of Prediction Performance 

 A systematic approach to assess prediction performance was used in this paper. 

Each time a prediction model is developed with p samples, an initial random division of 

the data into m training samples and n testing samples is done (being p=m+n). The model 

is trained only with the m training samples, being then the n testing independent variables 

inputted into the training model and the n response predictions compared with the n 

original responses from the training data (23). This comparison is done by computing 



performance metrics. The Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE) and the Coefficient of Determination, denoted by 𝑅2, where used, as defined in 

(17). Regarding this last coefficient, it ranges from 0 to 1 and the closer the value is to 

one, the better the fit, or relationship, between observed and predicted values (17). Also, 

the Pearson correlation coefficient was used in analyzing correlation between features 

and response (24). A consequence of randomly splitting a data set into training and testing 

samples, is that these samples may not be representative. For example, if the randomly 

selected training data happens to contain mostly samples with low annoyance values, 

then it would underperform when predicting on sounds of high annoyance. For ruling out 

these effects, the Monte Carlo simulation method was used, where this data division is 

randomly done many times (and for each time the model is trained and assessed). 

Afterwards, the average value of each performance metric can be computed and also its 

corresponding standard deviation during the simulation (25).  

 

3.1 Subjective Assessments of Sound Quality: Results 

 As shown in section 2.5, each juror classified a sound stimulus with respect to the 

anchor sound by choosing one of the adjectives presented in the software interface. Going 

from a discrete to a continuous annoyance scale, let 100 correspond to the extreme for 

maximum annoyance (Much More Annoying) and 0 be the extreme for minimum 

annoyance (Much Less Annoying). A total of 1200 subjective evaluations were collected, 

from 40 jurors, each one evaluating 30 different sound samples. The results were 

standardized according to the standard deviation of each juror and then, for each stimulus 

the average evaluation from all jurors was computed, thus, a vector of 30 annoyance 

evaluations being obtained. Finally, each stimulus evaluation, was re-scaled in a way that 

100 corresponds to maximum annoyance value and 0 to its minimum value. This 

procedure was also used for the psychoacoustic metrics, being that the extreme values 

that correspond to each one of the features can be found in Table 1. Table 2 contains the 

rescaled values of the psychoacoustic metrics and corresponding annoyance, allowing to 

relate each stimulus with the corresponding seat on the aircraft. 

 

Table 1: Maximum and minimum values for each psychoacoustic metric. 

- Loudness Fluc.Strength Tonality Sharpness Roughness 
 [Sone] [Vacil] [T.u.] [Acum] [Asper] 

Maximum 124.07 1.03 6.96 1.14 0.88 
Minimum 48.69 0.27 1.00 0.61 0.01 

Table 2: Subjective evaluations of sound samples obtained through jury testing and 

their respective psychoacoustic metrics (s indicates synchronous) 

Seat 
Nr. 

Stimuli Loudness 
Fluc. 

Strength 
Tonality Sharpness Roughness Annoyance 

1 1 97.02 34.69 77.49 93.09 1.72 97.96 
5s 2 90.97 0.00 88.96 87.16 7.96 95.22 
5 3 75.20 18.78 77.29 70.87 8.19 91.21 

15s 4 92.04 0.06 100.00 90.15 1.93 94.99 
20 5 87.01 23.96 91.97 85.86 1.93 94.03 
20s 6 100.00 1.98 99.17 100.00 0.79 97.84 
25s 7 99.96 6.50 99.92 99.88 0.00 97.46 
30 8 64.93 24.13 63.29 63.46 2.94 81.79 
1s 9 63.51 6.64 48.95 57.57 6.96 87.96 



6 10 98.36 40.03 86.64 94.85 1.93 100.00 
35s 11 52.85 39.47 40.12 49.98 5.47 79.12 
40s 12 38.03 55.39 28.64 37.64 19.28 68.12 
26s 13 17.77 66.50 3.24 17.13 100.00 54.07 
37 14 34.66 33.14 29.95 32.06 9.68 71.01 
50 15 24.01 84.17 9.59 33.93 62.95 63.80 
71 16 24.93 100.00 2.08 37.48 48.43 59.46 
22 17 60.45 72.31 54.82 58.90 6.24 92.13 
48 18 7.94 82.11 6.76 13.61 34.72 22.07 
59s 19 12.74 50.95 16.40 10.33 13.71 33.61 
59 20 6.65 54.95 7.75 5.06 23.79 24.79 
64 21 5.08 59.13 5.22 4.38 25.30 8.88 
64s 22 8.93 42.41 9.39 7.26 17.05 20.24 
68s 23 7.37 77.50 1.12 13.04 37.15 25.55 
72s 24 11.11 79.32 2.46 14.20 33.60 21.99 
73 25 3.38 57.79 1.26 3.87 37.01 6.92 
79s 26 0.18 53.10 0.00 0.88 32.81 0.00 
81s 27 13.92 71.95 0.00 19.69 36.87 38.87 
82 28 0.00 58.44 0.00 0.00 40.70 1.33 
84s 29 2.23 41.29 1.50 0.56 25.95 5.67 
85s 30 12.90 68.73 0.82 17.25 31.71 42.95 

 Before starting to develop the prediction models, it is important to study the 

correlation between the psychoacoustic metrics and the annoyance obtained for each 

sound sample, with jury testing. Thus, the Pearson correlation coefficient was computed 

for each psychoacoustic metric and annoyance and also between the different 

psychoacoustic metrics. These results are presented in Table 3. 

Table 3: Correlation matrix for the analyzed objective and subjective attributes. 

- Loudness Fluct. Str. Tonality Sharpness Roughness Annoyance 

Loudness 1 -0.74 0.98 0.99 -0.66 0.93 

Fluct. Str. - 1 -0.81 -0.68 0.70 -0.58 

Tonality - - 1 0.97 -0.72 0.87 
Sharpness - - - 1 -0.62 0.94 
Roughness - - - - 1 -0.53 
Annoyance - - - - - 1 

 

3.2 Predicting from Objective Metrics: Results 

 As described in section 2.6, four different types of feature-based prediction 

models were compared, where, for each one, a Monte Carlo simulation was done. The 

MLR has no relevant parameters to tune. Regarding the ANN, several combinations of 

its hyper-parameters are possible and play a role on its performance. Due to the small size 

of the data set and high correlation between predictor and response variables, only one 

hidden layer was used. The Monte Carlo simulation was performed, where, for two 

different training algorithms, the performance corresponding to different numbers of 

hidden neurons was computed. For each hidden neuron number, the data was divided 100 

times and for, each one of this divisions, the model was trained and assessed, being 

computed the average RMSE and its standard deviation. These results are represented in 

Figure 4. Analyzing this figure, it is clear the best performance occurs for 2 hidden 

neurons with the LM training algorithm. Therefore, from hence on the ANN is used with 

2 hidden neurons on the first hidden layer and trained with the LM training algorithm.  



 

 

Figure 4: Study on the number of hidden neurons influence on performance, for two 

training types. Each point represents the mean RMSE of 100 random data divisions and 

the standard deviation of the RMSE in these 100 divisions. The shadowed colouring of 

each curve represents the standard deviation. 

 
Figure 5: Comparison of the average RMSE and standard deviation of the RMSE (shaded 

colours) in 100 random divisions, for different percentages of training data. 

A study was also done on the influence of percentage of training data used on the 

performance of the feature-based predictions models. For the SVMs and RFs, a Bayesian 

Optimization of their hyper-parameters was conducted for each time the models were 

trained. From early on it was notorious the ANN outperformed the other techniques. 

Therefore, in Figure 5, the performance of each one of the techniques is compared with 

the ANN, for different percentages of training data, where each point corresponds to the 

average RMSE (and corresponding standard deviation) of the performance of models 

with 100 different randomly selected samples of training and test data. The ANN 



consistently has the smaller RMSE and also an inferior variability. Considering these 

results, an amount of 70% training data was for using in the further studies conducted, 

due to allowing to obtain a reasonable performance and ensuring an appropriate number 

of stimuli for testing (9). Also, it is notable the shortcomings of using MLR, being that it 

has a notably worse performance than the other methods, thus allowing to observe 

nonlinear modelling techniques are necessary for this phenomenon. 

In Table 4, it is possible to find the performance of each technique, for 70% of training 

data, averaged over 100 random data divisions. 

Table 4:Feature-based models averaged performance over 100 random data divisions 

(70% of data for training) 

- 𝑅2 MAE RMSE 

MLR 0.862 12.145 15.323 

ANN 0.98185 3.851 5.018 

SVM 0.92733 7.086 8.637 

RF 0.972 4.783 6.216 

 

 From the obtained results, the ANN was selected as the technique to use in 

complete prediction model. Selecting the best performing trained ANN from the ones 

previously trained, it is possible to input it with the data remaining from the 150 sound 

samples (i.e. their psychoacoustic metrics) and obtain a spatial mapping of the predicted 

annoyance values in all the seats in the aircraft, as shown in Figure 6. The obtained results 

allow to verify that annoyance has a great degree of variation in the cabin space and these 

variations occur in specific zones, being that the higher acoustic discomfort values are 

located in the seats near the propellers. 

 

Figure 6: Annoyance prediction in the aircraft cabin using the trained ANN. 

 

3.2 Predicting from Subjective Metrics: Results 

 As detailed in 2.5, CNNs are used for predicting features from time signals in the 

first block of the VP model. So, in this section, 5 CNNs are trained for predicting, from 

raw time signals the 5 psychoacoustic metrics previously used as inputs. The sounds 

samples used in this section were the ones that were not used for the jury testing. From 

the global set of 170 sound samples, 30 were used for jury testing, hence having 140 

stimuli for training this 5 CNNs. These remaining 30 stimuli were used for assessing 



prediction performance. Recalling from section 2.1 that their selection was done based 

on a cluster analysis, it is possible to consider these as a representative sample, thus being 

the Monte Carlo method not necessary. Due to the fact that five CNNs have to be trained, 

each one with a different data set, different architectures and hyper-parameters have to be 

selected in order to have a good performance. This was done using Bayesian 

Optimization, iterating between different layers until finding the stack that provides the 

best performance on the jury testing stimuli. In order to decrease the computing time 

necessary for training the models, the time signals were down-sampled from a sampling 

frequency of 44100 Hz to 8820 Hz. The selected architecture for each feature can be 

found on Table 5. 

 

Table 5: Architectures used for predicting psychoacoustic metrics from time signals. 

(a) Fluctuation Strength and Sharpness (b) Loudness, Tonality and Roughness 

Image Input Layer 
Convolutional Layer 

Batch Normalization Layer 
ReLU Layer 

Average Pooling Layer 
Convolutional Layer 

Batch Normalization Layer 
ReLU Layer 

Convolutional Layer 
Batch Normalization Layer 

ReLU Layer 
Dropout Layer 

Fully Connected Layer 
Regression Layer 

Image Input Layer 
Convolutional Layer 

Batch Normalization Layer 
ReLU Layer 

Average Pooling Layer 
Convolutional Layer 

Batch Normalization Layer 
ReLU Layer 

Dropout Layer 
Fully Connected Layer 

Regression Layer 

 

 On Table 6 the obtained performance for each CNN based model is presented, 

scaled from 0 to 100 and also reconverted in each psychoacoustic metric original scale. 

Observing the analyzed results it is possible to conclude that for loudness, sharpness and 

tonality the performance is evidently superior than for fluctuation strength and roughness.  

 

Table 6:Performance for the estimation of psychoacoustic metrics. 

- 𝑅2 MAE [0-100] MAE RMSE [0-100] RMSE 
Tonality 0.9407 7.4027 0.4410 T.u. 10.2450 0.6102 T.u 

Loudness 0.9094 8.1632 6.1531 Sone 10.9950 8.2879 Sone 
Sharpness 0.8863 9.3928 0.0496 Acum 11.9310 0.0630 Acum 
Fluct. Str. 0.6906 12.7650 0.0971 Vacil 15.2750 0.1162 Vacil 

Roughness 0.6345 8.5497 0.0741 Asper 13.8610 0.1201 Asper 

 

3.4 Feature Selection Study 

 Having now developed both blocks of the complete prediction model, it is 

possible to combine them having ready the Virtual Passenger model, where a sound 

sample can be inputted as a time signal, being the output the subjective sound evaluation 

(annoyance).  However, as it was seen in the previous section, the 5 trained CNN that 

estimate features from the time signals have different performances. Therefore, feature 

selection allows to obtain a better overall performance of the Virtual Passenger model. 

Designating Loudness by L, Fluctuation Strength by F, Tonality by T, Sharpness by S and 



Roughness by R, the effect of using different combinations of this features on the Virtual 

Passenger model performance was studied. Considering the results in Table 3, going from 

features with higher correlation with response to lower correlation ones, starting with all 

the features (LFTSR), these are sequentially removed one-by-one, until obtaining the 

combination LS. Also, LT was considered due to the high prediction performance 

obtained for tonality and because it represents an important psychoacoustic dimension. 

The 30 samples from the jury study were used for performance assessment and a Monte 

Carlo simulation was done. The 30 pressure signals are inputted into the CNNs and 30 

feature estimations are obtained for the 30 samples. Then, for each feature combination, 

the predicted features are introduced into 100 differently trained ANNs. Finally, the 

performance in predicting annoyance is computed (comparing with the original juror 

response) and averaged. The results are shown on Table 7. It is possible to observe that 

LS (Loudness and Sharpness) is the best performing feature combination. 

 

Table 7: Model average performances over 100 random data divisions for the second 

block, for each feature combination, subjectively assessed with the 30 sound samples. 

- 𝑅2 MAE RMSE 

LFTSR 0.8489 11.035 14.592 

LFTS 0.83519 10.969 14.881 

LTS 0.86077 9.9895 13.758 

LS 0.87609 9.6746 13.164 

LT 0.85931 9.8297 13.752 

 

When analyzing the developed model, it is necessary to recall that originally a 

juror would assess the sound sample with discrete classes. These classes would have a 

range of 17/100 in the continuous annoyance scale that was used. Therefore, firstly, 

accuracy can be defined as the number of times the model correctly predicts with an error 

inferior to the width of one of the original classes over the total number of predictions. 

Consequently, the developed predictive model has an accuracy of 80%, being that only 6 

of the 30 stimuli have a prediction error superior to 17/100 (Figure 7). 

   

 
Figure 7: model predictions compared with the original mean juror annoyance. 



4.  CONCLUSIONS 

This paper reports on the performance of a data-driven approach for the prediction 

of the acoustic discomfort of a passenger during a propeller aircraft flight. The proposed 

predictive model consists of two modules. The first one estimates, in time domain, 

psychoacoustic metrics using Convolutional Neural Networks tuned using Bayesian 

Optimization and the second one, based on jury testing data, is able to predict the 

passenger’s acoustic discomfort from Sound Quality metrics. On this last block, four 

techniques were compared through Monte Carlo Simulation. It was concluded that 

Artificial Neural Networks are capable of outperforming Support Vector Machines, 

Random Forests and a Multiple Linear Regression with inferior average prediction error 

and variability. After having the whole model trained, a feature selection study allowed 

to conclude that the predictive model has maximum performance (overall accuracy: 

~80%) when using as features Loudness and Sharpness.  

In future steps, the developed predictive model will be integrated into a multi-

attribute optimization workflow with the ambition of adopting the passenger annoyance 

as a parameter for the optimization of the design of the cabin of a virtual prototype of a 

regional propeller aircraft. In this perspective, ongoing studies are devoted to the 

assessment of the validity of the developed predictive model when applied to aircraft 

models of similar characteristics and in similar flight conditions.  
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