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ABSTRACT 

Amongst many important factors that affect the performance of active noise barrier, 

namely, the location of error microphones, and secondary sources, the intervals of 

adjacent error microphones and secondary sources, etc. this study focused on 

investigate the effect of secondary sources’ interval when they minimized the 

squared pressure at a set of 15 receivers located in the shadow zone of an infinite 

barrier. Three different positions around the top edge of barrier considered for 

secondary sources and best position which achieve the most reduction is selected. 

Also, the effect of ground reflections on the optimal secondary sources’ interval is 

investigated. 
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1. INTRODUCTION 

The use of barriers between noise sources and receivers is the widespread solution 

to avoid the direct acoustic pressure arrive at receivers [1]. Plenty of researches studied 

different methods to improve the performance of the noise barrier to reduce noise as much 

as possible. For instance, many of them investigated the effect of barriers shape, 

dimensions, and thickness on achieved reduction at receivers’ area.[2–4]. These studies 

reported that the barriers are not able to mitigate the low-frequency noises but for 

compensating this weakness barriers should be high enough to obstacle long noise 

wavelength. This solution is technically difficult and expensive to use in a real situation, 

and they have also some disadvantages such as visual blocking. 

Active noise control (ANC) is a method to improve the performance of barriers. 

Many investigations have conducted to evaluate and explain the performance of ANC 

when added to the barriers [5–11]. There are significant factors such as the location of 

error microphones and control sources, the distance between adjacent control sources, 

and the effect of ground reflection that play a key role to increase the efficiency of active 

noise barrier (ANB). 

The objective of this study is to find the maximum distance between adjacent error 

microphones and control sources when the active control achieves maximum noise 

reduction in shadow zone of the barrier for narrowband sounds in the range of 100–500 
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Hz. Furthermore, the effect of the ground reflection on the performance of active control 

has been studied for both hard and absorptive ground. 

Previous studies worked on optimization of intervals between error microphones 

[5], but there are few studies investigate the effect of distance between adjacent control 

sources when they minimize the acoustic pressures in interested area. This research 

found the optimized distance between sources in different frequencies. The best position 

for control sources, also detected when the distance is optimized. 

 

 

2. METHODOLOGY 

Figure (1) demonstrates the different zones around a barrier when noise source 

and receiver located at both sides of the barrier. Lines θ = θs − π and θ = 3π − θs 

divided the field into three regions. In region I, diffracted waves are the only sound waves 

pass from the barrier and arrive at the receiver. In region II in addition to diffracted waves, 

the noise source direct sound arrives at the receiver, and for those receivers located in 

region III total pressure is the summation of direct, reflected and diffracted pressures. [1] 

 

 
Figure (1): schematic diagram for the diffraction wave 

There are several methods to model the edge diffraction, but in this study, an 

analytical model employed due to its low computation requirements and accuracy. The 

MacDonald analytical model, which is the developed model of Sommerfeld for more 

general sound diffraction used to compute edge diffractions. 

Equation (1 a-c) present direct, reflected and diffracted acoustic pressure arrive at 

receivers from sources, respectively.  
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The diffracted pressure computed by analytical MacDonald solution, where k is 

the wave number, 𝑞0 is the source strength and 𝜌 and c are the air density and the sound 

speed in air, respectively. H1
(1)

( ) is the Hankel function of the first kind, 𝑅1 and 𝑅2 are 

the distances from source and its barrier image to the receiver, respectively. s is the 

variable of the contour integral and the limits of the two contour integrals in equation (1-

c) are determined according to 

ζ1 = sgn(|𝜃𝑠 − 𝜃𝑟| − π)√k(𝑅′ − 𝑅1)      (2,a) 

ζ2 = sgn(𝜃𝑠 + 𝜃𝑟 − π)√k(𝑅′ − 𝑅2) (2,b) 

where sgn()is the sign function, and 𝜃𝑠 and 𝜃𝑟 are the source and receiver angles 

respectively according to Figure 1, and 𝑅′ is the shortest path from source to receiver 

through the edge. 

 

2.1 Minimization of summation of squared pressure at error microphones  

In this approach, the far field noise reduced by introducing a multiplicity of 

secondary sources whose complex strength are adjusted to minimize the squared pressure 

at error microphones. Considering “M” error microphones, and “N” secondary sources, 

the vector 𝑷𝑡𝑜𝑡 shows the total acoustic pressure obtain in the  position of error 

microphones due to primary and secondary sources, equation [12]. 

𝑷𝒕𝒐𝒕 = 𝒁𝑃𝑞𝑃 + 𝒁𝑠𝒒𝑠 (3) 

where 𝒁𝑃 is the vector of primary source pressure with the strength of 𝑞𝑃 at 

receivers, 𝒁𝑠 is an M×N matrix, and 𝒒𝑠 is the vector of secondary sources’ strength. 

Equations (6, a- 6, c) show them in vector and matrix format. 

𝒁𝑃
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𝒒𝑠
𝑇 = [𝑞𝑠1 𝑞𝑠2 … 𝑞𝑠𝑁] (6,c) 

where 𝑃𝑃𝑀 is the primary source pressure at “𝑀”th error microphones, 𝑃𝑠𝑀𝑁 is the 

“𝑁”th secondary source pressure at “M”th error microphones, and T shows the transpose 

of the vector. This study considered the squared pressure at receivers (𝑱𝑝) as a cost 

function for minimization. Equation (7) shows the squared pressure at error microphones, 

𝑱𝑝 = 𝑷𝐻𝑷 = 𝒁𝑃
𝐻𝒁𝑃 + 𝒁𝑃
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𝐻𝒁𝑝 + 𝒒𝑠
𝐻𝒁𝑠

𝐻𝒁𝑠𝒒𝑠 (7) 



Equation (7) is a quadratic function of the secondary source strength. The vector 

of secondary sources’ strength obtains by minimizing this function. Equation (8) 

demonstrates the vector of secondary sources’ strength, 

𝒒𝑠0 = −(𝒁𝑠
𝐻𝒁𝑠)−1(𝒁𝑠

𝐻𝒁𝑝)  (8)  

A thin infinite barrier with completely reflective surfaces considered between a 

primary source and receivers. The barrier is 2.5 m tall. Figure (2), shows the schematic 

diagram of barrier and receivers, and three different positions of control sources. 

 
 

Figure (2): Schematic diagram of an infinite barrier with receivers 

(a) Top view, (b) Side view 

 

The set of 15 receivers located in a horizontal plane at the height of 𝑍𝑟=1.65 m 

from the ground. The distance between adjacent receivers in Y-direction is 2 m, and are 

5 m in X-direction and the barrier is 2 m far from the first row of receivers. The primary 

source is fixed at the (-7, 0, 0.3) m with the modulus strength of 1 𝑚3𝑠−1. In order to 

control the primary source noise, 10 control sources consider in a line arrangement near 

the edge of barrier in 3 different positions A, B, and C where are 0.5 m away from 

diffractive edge of barrier. These control sources minimize the summation of squared 

pressure at 10 error microphones located at the top edge of the barrier. The error 

microphones and control sources considered along the Y-direction distributed 

symmetrically with respect to the X-axis. 

In this study, the optimized distance between control sources computed when the 

active control achieves the maximum reduction in sound pressure levels at the group of 

receivers. The reduction at receivers calculate by Equation 7. 
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3. RESULT 

The effect of three important parameters on the performance of active noise barrier is 

investigated. These parameters include 1- the location of control sources around the top 

edge of barrier 2- the interval of control sources, and 3- the soil impedance. 

Figure (3) shows the reduction achieved at receivers with the control sources located at 

three different positions and changing the distance between error microphones from 𝑘𝑑 =
0 to 𝑘𝑑 = 3𝜋. Each control source is aligned with the corresponding error microphone. 



This figure represents the effect of location of control sources on the performance of 

active noise barrier. More reduction achieved when the control sources are at position A 

which indicates that the best position for control sources is in the incident zone and near 

the diffractive edge. 

In addition, this figure displays, the importance of distance between error sensors. As it 

shows when the number of control sources and error microphones is same the maximum 

reduction for all frequencies achieved when 𝑘𝑑 ≅ 𝜋, which mean the best distance for 

error microphones is half of wavelength in each single frequency. This result is 

independent of the position of control sources. 

 
 (a) 
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Figure (3): Reduction at receivers with hard ground, at different control source 

positions (a)A, (b)B, (c) C 

Figure (4) demonstrates the effect of the interval between control sources when the error 

microphones placed at top edge with a fix distance of 0.35 m, which is half of shortest 

wavelength in narrowband frequency of 100 Hz to 500 Hz.  
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Figure (4): Reduction at receivers with hard soil, with different control source interval 

(a)A, (b)B, (c) C 

Figure (4) shows when the distance between error microphones are fixed, the reduction 

obtained when the distance between control sources is between 0.3 to 0.4 m for the case 

of control sources at position A, but when they located above the barrier edge, active 

control mitigate noise when their interval is between 0.3 to 0.6 m, Figure (4,b)), and also 

when the control sources are at position C, the best interval to reduce noise at the 

interested area is between 0.3 to 0.4 m. Considering all results of Figure (4), reveal the 



best distance for control sources should be from 0.3 to 0.4 m, which is close to the value 

of the distance between error microphones distributed along the edge. 

Table 1 compares the reduction at receivers for two cases of hard and absorptive soil. The 

distance between control sources is 0.35 m which is same as the distance between error 

microphones. It shows the soil reflection has a destructive effect on the performance of 

ANB. 

 

Table 1: reduction at receivers with hard and absorptive soil 

 Reduction (dB) 

Frequency (Hz) 
Hard soil Absorptive soil 

A B C A B C 

100 -5.26 -3.37 -4.71 -5.39 -4.16 -2.37 

200 1.42 3.07 -3.6 -4.67 -3.17 -3.26 

300 -1.87 -1.26 -1.96 -3.54 2.48 -2.37 

400 -4.1 -2.81 -2.52 -2.7 -2.73 -2.4 

500 0.88 0.05 -0.71 -2.78 -3.9 -2.3 

 

4. CONCLUSION 

This study aimed to find the optimized distance between control sources in order to 

achieve the maximum attenuation at receivers in the shadow zone of an infinite barrier 

when they locate in different positions. 

Our results show that the optimized distance between adjacent control sources is 

independent of the position of control sources, and should be approximately the same as 

half of operating wavelength. Furthermore, the optimal position for control sources is in 

the incident zone of the barrier. 

Finally, considering the pressure reduction in the area of interest, we found the best 

position for both cases of hard and absorptive soil is the noise incident zone and the best 

results obtained when the distance between error microphones is less than half of 

operating wavelength. The results also show the active control works more efficiently 

when the distance between the control sources is close to the value of distance between 

error microphones. 
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