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ABSTRACT

The analysis of porous materials for aeroacoustic noise mitigation requires
high-fidelity numerical tools to simulate the sound propagation and interaction in
porous media. The manuscript presents the calibration and validation of a direct-
hybrid LES/CAA method used to model the aerodynamically generated sound.
The porous micro-structures are modeled with a volume-averaging approach.
Additional terms, emerging in the governing equations, owing to the force exerted
by the porous matrix on the fluid, are closed by means of Darcy’s law and the
quadratic Forchheimer term. The sound generation and propagation is predicted
by a solution of the acoustic perturbation equations via a discontinuous Galerkin
method. The model for the porous material is separately calibrated for the CFD
and CAA with the parameters retrieved by the characterization of a melamine foam
in experimental tests. The sound predicted by an absorbing layer of the material
is compared with measurements performed in an impedance tube. Secondly,
the transmission coefficient of the melamine foam placed in an acoustic liner
configuration inside a duct is studied numerically. The results are then compared
with experiments conducted in absence of a flow and also with a flow velocity of 30
m/s in order to assess the accuracy of the model calibration.
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1. INTRODUCTION

In the current work, sets of equations to be used in flow and acoustic simulations
of porous media are presented in the compressible framework. This involves the
Darcy-Forchheimer model, which has been extensively used for incompressible flow
simulations [1], but only recently applied for acoustic predictions [2–4]. The model
assumes a rigid porous frame, i.e. no elastic coupling effects are taken into account.
For simple homogeneous porous materials with porosity and tortuosity close to one, as
considered here, it is assumed that the parameter that mostly influences the acoustic
behavior of the material is the flow resistivity [5].

For its validation, the model has been firstly calibrated considering a sample of
melamine foam and then applied to different configurations for analyzing the sound
absorbing behavior of the material and for studying the transmission and the reflection
coefficients in a liner configuration. The calibration procedure requires the knowledge
of the parameters of the porous medium, that can be retrieved through the experimental
characterization of the sample based on impedance tube measurements. According to the
semi-phenomenological model of Johnson-Champoux-Allard-Lafarge (JCAL) [6], the
six parameters considered necessary to fully characterize the material are the static air
flow resistivity, σ, the porosity, ε, the tortuosity, α∞, the viscous characteristic length,
Λ, the thermal characteristic length, Λ′ and the thermal permeability, κ′0. Beside these,
another parameter that is used to define a porous medium is the viscous permeability, κ0,
which is directly linked to σ.

In Chapter 2 the model equations for porous media for the flow and acoustic fields are
presented and analyzed for the case of plane waves. Chapter 3 introduces the experimental
setups, which are considered in Chapter 4 to evaluate the model.

2. MODELING OF THE POROUS MEDIA

The numerical part of the present work relies on a hybrid two-step CFD/CAA approach
for the prediction of aerodynamically generated noise, where the former provides the
mean flow field and acoustic sources for the subsequent CAA simulation, which accounts
for effects, like convection, refraction, diffraction and scattering of acoustic waves. This
enables for both an optimal choice of the respective numerical solvers, preferably a high
order scheme for the CAA, and differing mesh resolutions to cope with the large disparity
in the turbulent and acoustic scales.
In the remainder of this chapter, the model equations for the porous media are derived
for the flow and acoustic part. Finally, the model is theoretically analyzed for the simple
case of a plane wave propagation in the limit of vanishing mean flow, in terms of the
complex impedance, the complex wave number and the complex reflection coefficient at
the fluid-porous interface.

2.2.1. Volume Averaged Navier Stokes Equations for the CFD

The full resolution of the porous micro-structures, e.g. in the order of O(100 µm), for
a realistic setup is beyond today’s computing power. Thus, it is state-of-the-art to apply
the method of volume averaging [1, 7, 8] and treat the air-saturated porous media as a
homogeneous phase, to effectively account for the integral effects of the porous matrix on
the possibly turbulent flow field. Considerable work has been devoted in the past to derive
the equations for the incompressible flow, including special treatments for the change



in material parameters at the fluid-porous interface by e.g. either the variable porosity
model [2,9] or a momentum transfer condition formulated as a jump condition across the
interface as suggested in [10]. Since a careful derivation in the compressible framework
is rare, it will be briefly outlined in the following:
The volume averaging operation, acting as a spatial filter, for a quantity φ is defined as:

〈φ〉s =
1
V

∫
V f

φdV = ε〈φ〉 with 〈1〉s = ε, (1)

〈φ〉 =
1

V f

∫
V f

φdV, (2)

where ε ∈ [0, 1] , f (t) for a rigid porous material, 〈 〉s denotes superficial average, 〈 〉
intrinsic average and V f = εV is the volume occupied by the fluid phase. V can be
conveniently considered as a filter size which scales with the characteristic length of
the pores. To express the derivatives in the governing equations in terms of averaged
quantities rather than averaged derivatives, the spatial averaging theorem and the
commutation of the time derivative and averaging is employed [8]:

〈∇φ〉s = ∇〈φ〉 +
1
V

∫
A f s

nφdA, (3)〈
∂

∂t

〉
=
∂

∂t
〈 〉, (4)

with A f s denoting the fluid-solid interfacial area in the porous media. The Favre average
of the velocity relates to the superficial and intrinsic averages as follows:

〈ui〉F =
〈ρui〉

〈ρ〉
=
〈ρui〉

s

〈ρ〉s
with ui = 〈ui〉F + u

′′

i . (5)

Applying Equations 1 - 5 to the compressible Navier-Stokes equations and taking into
account the no-slip condition one obtains for the mass conservation:

∂〈ρ〉

∂t
+

∂

∂x j

(
〈ρ〉〈u j〉F

)
+ 〈ρ〉〈u j〉

∂

∂x j
ln ε = 0. (6)

The same procedure applied to the momentum equation yields in a first step:

∂

∂t
(〈ρ〉〈ui〉F) +

∂

∂x j

(
〈ρ〉〈ui〉F〈u j〉F

)
+
∂〈p〉
∂xi
−
∂〈τi j〉

s

∂x j
+ 〈ρ〉〈ui〉F〈u j〉F

∂

∂x j
ln ε + (7)

+〈p〉
∂

∂xi
ln ε +

∂

∂x j

(
〈ρuiu j〉

s − 〈ρ〉s〈ui〉F〈u j〉F

)
+

1
V

∫
A f s

n j(pδi j − τi j)dA = 0,

where the usual notations for the Kronecker delta δi j and the viscous stress tensor τi j have
been used. Following the discussion in [11], the spatial correlations in the unresolved
variations, the subgrid-scale stresses in an LES, are neglected. The surface integral
accounts for the presence of the solid phase, exerting a force on the fluid. It is further
assumed that the molecular transport properties vary negligibly over the averaging
volume. Using Equation 1, the integral can be reformulated:

1
V

∫
A f s

n j(pδi j − τi j)dA ≈ −〈p〉
∂

∂x j
ln ε + 〈τi j〉F

∂

∂x j
ln ε +

1
V

∫
A f s

n j(p
′

δi j − τ
′′

i j)dA︸                        ︷︷                        ︸
:=Fi

. (8)



By splitting the gradient-porosity terms of the averages from the remaining terms, the
newly emerged integral in the fluctuation quantities contains only a negligible excess
contribution in non-homogenous regions. The problem is closed by means of Darcy’s law
and the Forchheimer correction term [12, 13], which, written in a non-dimensional form
for an isotropic medium, reads:

F̂i =
1

Redp

√
Da

εµ̂ûi︸            ︷︷            ︸
Darcy

+
1
√

Da
ε2cF ρ̂

√
û jû jûi︸                   ︷︷                   ︸

Forchheimer

with Redp =
ρre f ure f dp

ηre f
, Da =

κ

L2
re f

. (9)

κ[m2] is the permeability, quantifying the flow resistivity,
√
κ ∼ dp is a measure for the

effective pore diameter, cF is the Forchheimer coefficient and ()re f refers to some problem
specific reference quantities. In a nearly incompressible flow, conservation of mass flux
requires O(εû) ∼ 1 and O(ε2û2) ∼ 1, such that O(Darcy) ∼ 1/

√
DaRedp and O(Forch.) ∼

cF/
√

Da. The former is related to the Stokes drag, whereas the later accounts for the
inertia effects at higher permeability Reynolds numbers Redp .

Finally, the superficial average of the viscous term in Equation 7 is reformulated for a
Newtonian fluid:

〈τi j〉
s = ε〈τi j〉F + µ

(
〈ui〉F

∂ε

∂x j
+ 〈u j〉F

∂ε

∂xi
−

2
3
〈uk〉F

∂ε

∂xk
δi j

)
︸                                               ︷︷                                               ︸

Ai j

, (10)

which completes the derivation of the averaged momentum equation:

∂

∂t
(〈ρ〉〈ui〉F) +

∂

∂x j

(
〈ρ〉〈ui〉F〈u j〉F

)
+
∂〈p〉
∂xi
−
∂〈τi j〉F

∂x j

+〈ρ〉〈ui〉F〈u j〉F
∂

∂x j
ln ε +

Fi

ε
−

1
ε

∂Ai j

∂x j
= 0.

(11)

In this work the viscous gradient-porosity terms are neglected compared to the inviscid
terms. Similar considerations, where the heat flux at the fluid-solid interface is omitted,
leads to the volume averaged energy equation:

∂

∂t
(〈ρ〉〈E〉F) +

∂

∂xk
(〈uk〉F(〈ρ〉〈E〉F + 〈p〉)) −

∂

∂xk

(
〈u jτ jk〉F

)
−
∂〈kd,k〉

∂xk

+
(
〈uk〉F(〈ρ〉〈E〉F + 〈p〉) − 〈u j〉F〈τ jk〉F − 〈kd,k〉

) ∂

∂xk
ln ε −

1
ε

∂

∂xk

(
〈u j〉FA jk

)
= 0,

(12)

where, again, the subgrid-scale stresses have been neglected. For ε = 1 one retains
the volume averaged Navier-Stokes equations without subgrid scale stresses formally
identical to the equations solved in a MILES context. The difference is the requirement
with respect to the filtering width in the LES compared to the filtering in a porous medium,
which is dictated by the scales of the porous micro-structures. The aforementioned
equations are solved for the flow field using a finite-volume method based on an
advective upstream splitting method (AUSM) in combination with the monotone
upstream centered scheme for conservation laws (MUSCL) for the inviscid fluxes
and a centered discretization for the viscous fluxes. Both spatial formulations are
second-order accurate. A low-storage explicit 5-stage Runge-Kutta method for the time
integration [14–16] also of second-order accuracy is used for the time integration. The



equations are discretized on a locally refined unstructured Cartesian mesh, where a fully
conservative cut-cell approach is used for the immersed boundaries [16]. The LES is
based on the MILES ansatz, in which the low dissipation of the numerical methods
replaces an explicit subgrid scale model. From Equations 6, 11 and 12 it can be derived,
that the inviscid gradient-porosity terms describe an isotropic flow change across the
interface, as was already suggested by [17, 18] for compressible flows and naturally
follows from the preceding derivation. To circumvent the numerical implementation of
dirac-shaped source terms and a smearing of the interface, a numerical implementation,
in which the jump is directly incorporated into the flux discretization of the finite-volume
method has been devised to sharply resolve the fluid-porous immersed interface on a
non-interface fitted Cartesian mesh [19].

2.2.2. Volume Averaged Perturbation Equations for the CAA

The derivation of acoustic perturbation equations starts by reformulating Equations 6, 11
and 12 into equations for the intrinsic pressure 〈p〉 and the Favre-averaged velocity 〈ui〉F:

∂〈ui〉F

∂t
+ 〈uk〉F

∂〈ui〉F

∂xk
+

1
〈ρ〉

∂〈p〉
∂xi
−

1
〈ρ〉

∂〈τki〉F

∂xk
+

1
〈ρ〉

Fi

ε
= 0, (13)

∂〈p〉
∂t

+ 〈uk〉F
∂〈p〉
∂xk

+ γ〈p〉
∂〈uk〉F

∂xk
− (γ − 1)〈τ jk〉F

∂〈u j〉F

∂xk
− (γ − 1)

∂〈kd,k〉

∂xk

+
(
γ〈p〉〈uk〉F − (γ − 1)〈u j〉F〈τ jk〉F − (γ − 1)〈kd,k〉

) ∂

∂xk
ln ε − (γ − 1)〈ui〉F

Fi

ε
= 0.

(14)

Alternatively, spatial averaging can be applied to the p and ui equations, but the
neglect of higher order terms in the spatial fluctuations needs to be consistent to those
approximations applied in the derivation of the continuity, momentum and energy
equations. Inserting a perturbation ansatz φ = φ̄ + φ′, where φ̄ can be conveniently
regarded as the time average, into Equations 13 and 14, and identifying the left hand side
wave operator of the APE-4 system [20] with the unstable vorticity mode excluded, the
perturbation equations in conservative non-dimensional form (in the following a special
notation for non-dimensional quantities is omitted for clarity) read:

∂ερ′s
∂t

+
∂

∂xk

(
ρ̄u′k + εūkρ

′
s
)
−
ε

c̄2

[
2εν

Ma∞
DaRe∞

ρ̄ūi + 3
ε2cF
√

Da
|u|ρ̄ūi

]
u′i

−
|ū|2

c̄2

[
εν

Ma∞
DaRe∞

+
ε2cF
√

Da
|ū|

]
ρ′s = εS ρs ,

(15)

∂u′i
∂t

+
∂

∂xk

(
ūku′k + c̄2ρ

′
s

ρ̄

)
+

[
εν

Ma∞
DaRe∞

δi j +
ε2cF
√

Da

(
ū jūi

|u|
+ |u|δi j

)]
u′j = S ui , (16)

where, for ease of notation, the angle brackets 〈 〉 were omitted. Ma∞ denotes the Mach
number, DaRe∞ = Redp

√
Da and c is the speed of sound. By the choice of variables

the entropy mode is excluded as well. For the use in a conservative numerical scheme,
the density fluctuation ρ′s in an isentropic acoustic medium corresponding to the pressure
fluctuations of the actual problem was introduced. According to the Euler assumption,
namely vanishing viscous and thermal effects of the bulk fluid on wave propagation, all
but the predominant Darcy and Forchheimer terms in the porous media are shifted to
the right hand side source vector (S ρs , S u)T , which includes moreover all higher order
terms in the fluctuations. For aerodynamically induced noise, the source vector reduces



in good approximation to the Lamb vector. The additional acoustic attenuation from the
interaction with the pore walls enters the modified APE-4 system through the Darcy terms,
which scale by εMa∞/DaRe∞ and the Forchheimer terms, which scale by εcF/

√
Da. Note

that in contrast to the flow quantities governed by the volume averaged Equations 6, 11
and 12, no apparent gradient terms acting solely at the interface appears at first sight,
but as will be discussed in Chapter 2.3 the jumps in the acoustic quantities are encoded
in the flux expressions. The system 15, 16 is solved by a high-order spectral element
Discontinuous-Galerkin (DG) method [21].

The entire methodology is embedded in the in-house multiphysics solver ZFS, where
in a directly coupled simulation both solvers run concurrently on a joint hierarchical
Cartesian grid.

2.2.3. Model Analysis for Plane Waves

In the simplest case of a 1D wave propagation in the absence of mean flow, only the
Darcy drag in Equation 16 is retained and the problem can be analyzed in frequency
domain. Figure 2 shows several acoustical quantities, derived in the following. For a first
sensitivity analysis the problem is considered in non-dimensionless form as a function of
the least number of influence parameters, namely ε, Da and Re0 = Re∞/Ma∞. Apart from
the frequency the quantities depend either on ε/DaRe0 alone, or in case of the reflection
coefficient R for instance also on ε. For reference realistic physical quantities for the
problems presented in Chapter 3 are given alongside.
The parameter variation presented in Figure 2 can be taken from Table 1, where the
permeability κ for fixed values of ε is exemplarily given. Complex quantities are displayed
in terms of the amplitude and the phase. The analytical dispersion relation of the reduced
system contains information regarding the complex, frequency dependent characteristic
impedance:

Z(ω) = ρ̄c̄
√

1 − i
ε

DaRe0ω
(17)

and the complex wave number (with the normalized characteristic impedance Ẑ(ω) =

Z(ω)/ρ̄c̄):

kp =
ω

c̄


√

1
2

[
|Ẑ(ω)|2 + 1

]
− i

√
1
2

[
|Ẑ(ω)|2 − 1

] (18)

of plane wave solutions. In this limiting case of a mean flow at rest and remote from
interfaces, the present model coincides with the model in [4], where the same expression
for the complex wave number was obtained. According to Equation 17 acoustic waves
in porous media exhibit a phase shift between pressure and particle velocity, already
indicating that in case an acoustic wave hits the fluid-porous interface from the pure fluid,
a reflected wave will be inevitably generated, to satisfy the impedance relation inside the
porous media. For limDaRe0ω→∞ Z(ω) = Z f luid, i.e. large pore sizes or high frequencies,
the behavior in pure fluid is restored. The real part of the complex wave number is
illustrated in terms of the frequency dependent phase velocity ω/Re(k(ω)), normalized
by the speed of sound in the pure saturating fluid c f in Figure 2(c). Clearly, the speed of
sound is lower than in the fluid and the acoustic wave propagation in the porous medium
is dispersive. The acoustic attenuation is dictated by p̂(x)/ p̂(0) = exp{Im(k(ω))x} and
shown in Figures 2(h) and 2(i) for two different ε/DaRe0-values.



To get the complex reflection and transmission coefficients for ρ̄, c̄ ∈ C0(∂B), the plane
wave solutions in the pure fluid and pure porous regions are matched at the interface
(compare Figure 2.3) via the relations:

u′f = εpu′p and p′f = p′p (19)

yielding:

R =

(
|Ẑ(ω)|
εp

)2
− 1 − i 1

εp

√
2(|Ẑ(ω)|2 − 1)(

|Ẑ(ω)|
εp

)2
+ 1 + 1

εp

√
2(|Ẑ(ω)|2 + 1)

resp. lim
DaRe0ω→∞

R =

1
εp
− 1

1
εp

+ 1
. (20)

Subscript ′ f ′ indicates fluid quantities and ′p′ the effective quantities in the porous media.
The reflection is a function of the normalized impedance and the porosity ratio, as is the
complex transmission coefficient T = 1 + R. This is illustrated in Figures 2(d) - 2(g)
for ε = 1.0 and ε = 0.8 together with the limiting case, when R(εp, ω) for DaRe0 → 0.
Note, that lim f→∞ arg(R) = 0◦, ∀εp ∈ (0, 1), i.e. the phase shift is maximum for a certain
frequency, which shifts to lower values for an increasing porous drag.

x

p+
f = p̂+

f ei(ωt−k f x)

p−f = p̂−f ei(ωt+k f x)

p+
p = p̂+

pei(ωt−kp x)

porousfluid ∂B

Figure 1: Incident, reflected and
transmitted waves at the fluid-porous
interface.

H
HHH

HHH
ε

DaRe0

ε
1.0 0.8 0.6 0.4

0.4 ( ) 1.75 1.40 1.05 0.70
0.6 ( ) 1.17 0.93 0.70 0.47
0.8 ( · ) 0.88 0.70 0.53 0.35
1.0 (· · · ·) 0.70 0.56 0.42 0.28

Table 1: Permeability in 10−9 m2 for
different combinations of ε and Da for air
with kinematic viscosity ν = 1.568 · 10−5

m2/s, speed of sound c f = 347 m/s and
characteristic length Lre f = 15.5 mm. The
different linestyles refer to Figure 2.

3. EXPERIMENTAL CHARACTERIZATION OF MELAMINE FOAM

In the present section, the experimental setups considered for the analysis of melamine
foam sound absorbing behavior and for the characterization of its properties are
described. Moreover, the facility used to study anechoic transmission and reflection in a
liner configuration is presented. The measurements have been conducted in collaboration
with Centre de Transfert de Technologie du Mans (CTTM) and Laboratoire d’Acoustique
de l’Université du Maine (LAUM).

3.3.1. Static air flow resistivity determination

For the determination of the static air flow resistivity, the measurement unit referred
to the standard ISO 9053 has been exploited. σ is obtained by measuring the pressure
gradient ∆p on both sides of a sample through which a stabilized volume flow Qv passes:

σ =
∆pS
Qvl

, (21)
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Figure 2: Acoustic quantities deduced from Equations 15 and 16 in case of plane waves.
The non-dimensionalization and legend are given in Table 1.

where S is the cross section area of the sample and l is its length. Due to the anisotropic
and inhomogeneous nature of melamine foam, three different cylindrical samples with a
diameter of 44.5 mm and a thickness of 15.5 mm have been manufactured. The values
of the static airflow resistivity for the different samples are 9215 Pa·s·m−2, 8600 Pa·s·m−2

and 8233 Pa·s·m−2, with an uncertainty of 700 Pa·s·m−2. The retrieved parameters are in
agreement with the typical range of values for the melamine foam (8000-12000 Pa·s·m−2).

3.3.2. Sound absorption behavior analysis

In Figure 3 (configuration A) the setup for the determination of the sound absorbing
behavior of the material by means of an impedance tube is depicted. A loudspeaker is
placed at one side whereas the sample of the test material is at the opposite one. In
the tube, a standing wave pattern is generated from a broadband stationary noise signal,
being the result of a forward traveling sound wave and a backward (or reflected) sound
wave. The frequency of the sound signal is kept lower than the cut-off frequency of the



Figure 3: Configurations of the impedance tube for the determination of the sound
absorbing behavior (A) and the characterization of the pore parameters (B) of melamine
foam. The distances are expressed in mm.

tube to assure the generation of plane propagating waves. Two fixed microphones are
located at two different positions in the tube wall. The method, labeled as 2p method
[22,23], is based on the estimation of the transfer function between the microphones. The
measurement of the transfer function allows the mathematical separation of incident and
reflected waves, leading to the anechoic reflection coefficient R of the sample for the same
frequency band of the broadband signal. The normalized characteristic impedance Z and
absorption coefficient α can be derived by:

Ẑ =
1 + R
1 − R

; α = 1 − R2. (22)

For the measurement, a white noise signal is emitted by the loudspeaker with a frequency
range of 50-5000 Hz, whereas the range considered for the acquisition is 80-4300 Hz.
The sampling frequency is set to 51200 Hz.

3.3.3. Characterization of melamine foam parameters

The impedance tube in Figure 3 has been set up for a second measurement with four
microphones (configuration B) with the aim of determining the porous model parameters
through the inverse characterization method developed by Niskanen et al. [24]. The
technique consists of fitting the JCAL model describing the porous medium to the
measurement of the scattering matrix, which contains the anechoic reflection, R, and
the anechoic transmission, T ′ = TeikL, of the material, L being the thickness of the
considered sample. The inversion is performed in the Bayesian framework. T ′ and R can
be expressed by:

T ′ =
p−o p+

i − p+
o p−i

(p+
i )2 − (p−i )2 ; R =

p+
o p+

i − p−o p−i
(p+

i )2 − (p−i )2 . (23)

The considered excitation signal is a logarithmic swept sine, over the frequency range of
100–4300 Hz, in order not to overcome the cut-off frequency of the tube (∼ 5 kHz). The
microphones have been first calibrated and phase matched with each other to enhance the
accuracy of the results. The pore parameters obtained for the samples for the frequency
range of 800-5500 Hz are listed in Table 2 and have been also used as inputs for the JCAL



model in order to compare the experimental absorption coefficient with the analytical
predictions.

Table 2: JCAL model parameters characterizing the melamine foam

ε [-] α∞ [-] Λ [m] Λ′ [m] κ0 [m2] κ′0[m2]
0.986 1.02 1.344 · 10−4 1.942 · 10−4 1.410 · 10−9 2.382 · 10−9

3.3.4. Liner configuration

A scheme of the setup prepared for studying the effects of the flow on the transmission
and the reflection of the sound waves in the porous media is shown in Figure 4. The
melamine foam sample has been cut in the form of a 200 mm x 100 mm rectangular
plate with a thickness of 15.5 mm and flush mounted in a metallic box, forming a liner
configuration that is placed in a wind tunnel and that is held in position by a series of
metallic bars having the same thickness of the plate.

Figure 4: Scheme of the melamine foam sample flush-mounted on the wind tunnel wall.
The distances are expressed in mm.

The box containing the samples is placed in the central part of the wind tunnel. In
order to avoid acoustic reflection, the tunnel is equipped with anechoic terminations. Two
B&K microphones are placed at each side of the liner. A loudspeaker is located upstream
of the sample and emits a logarithmic swept sine over the frequency range of 100–4300
Hz. Its position can be modified in order to invert the direction of the sound propagation
in relationship to the position of the sample. The flow goes from the right to the left of the
tunnel. The comparison between the signal recorded by the upstream microphones and
the ones downstream of the sample leads to the estimation of anechoic transmission and
reflection. A possible way to measure the matrices has been reviewed by Åbom [25]. The
test has been conducted in absence of flow and with a flow velocity of about 30.5 m/s.

4. MODEL EVALUATION

Hereinafter, the low velocity limit, where inertia effects expressed by the Forchheimer
term are negligible, i.e. the low permeability Reynolds number Red limit, will be
considered. The data from the experiments will be used to evaluate the predictive
behavior of the porous model from Chapter 2.



4.4.1. Flow resistivity test

For the reduced model, the experimental data can be used to make a priori estimation
of the permeability or the Darcy number, respectively, from the (static) flow resistivity σ
with the simplifying assumption of a top-hat velocity profil. With view on Equation 9 the
linear Darcy drag scales by the local flow velocity inside the porous layer. Assuming a
constant pressure drop and an isothermal flow an appropriate mean velocity can be derived
to be ū ≈ ρu

∆ρ
ln(ulp/urp), where ulp and urp denote the velocities at the left and right edges

of the porous sample and from that the permeability (Da) has been estimated to be κ =

2.12 ·10−9 m2 (Da = 8.82 ·10−6) for a mean σ̄ = 8683 Pa·s·m−2. This has been confirmed
by a simple laminar channel simulation and used to validate the implementation.

4.4.2. Impedance tube

In the numerical simulations, for the purpose of efficiency, the loudspeaker was
modeled by a superposition of multiple harmonics, and weakly enforced at the inlet
boundary, which for plane waves is non-reflecting for outgoing waves. The number of
harmonics are chosen to avoid an interference among adjacent frequency components,
due to the finite resolution of the frequency content, following the total acquisition
interval. The data acquisition for the DFT includes a time span of an integral multiple of
the lowest frequency component, to avoid windowing and thus a blurring of the spectrum
due to spectral leakage. The time domain signals are post processed via a FFT, to get the
acoustic responses in frequency domain. The porous sample was resolved by 51 elements
and a fourth-order discretization was used.
Since the mathematical problem of a sound wave propagating in a duct can be considered
one-dimensional for frequencies up to the cut-off frequency, the total sound pressure at
any point in the tube can be expressed by:

P(x) = Ae−ikx + Beikx. (24)

The transfer function between the two microphones, indicated by the subscripts 1 and 2,
is:

H12 =
P(x2)
P(x1)

=
Ae−ikx2 + Beikx2

Ae−ikx1 + Beikx1
=

e−ikx2 + Reikx2

e−ikx1 + Reikx1
, (25)

where R = B/A is the pressure reflection coefficient, which follows from:

R =
e−ikx2 − H12e−ikx1

H12eikx1 − eikx2
. (26)

The results for the sound absorption coefficient Equation 22 are shown in Figure 5(a)
for the three samples from the experiments and the numerical simulations, performed
for three different permeabilities. κ = 2.12 · 10−9 m2 belongs to the value as retrieved
from the flow resistivity test and obviously underpredicts the acoustic absorption. This is
however in accordance to the deviating values of σ as deduced from the static pressure
drop measurements and the JCAL model parameters as retrieved by inverting acoustic
measurement data, where the viscous permeability κ0 is related to the flow resistivity σ
by κ0 = η/σ and yields a static air flow resistivity of ≈ 13000 Pa·s·m−2 (compare Table
2). The molecules in a longitudinal acoustic wave carry out a dynamic forth and back
movement, as opposed to the in average steady directional movement of the molecules in
a steady laminar flow, such that it assumed that at the pore-scales, the interaction between



the fluid and the rigid frame might obey different mechanisms (see also [5]). This justifies
a separate calibration of the Darcy model by means of the acoustic measurements for the
wave propagation simulation rather than adapting κ from the static flow measurement. In
this way, a third curve for κ = 0.84·10−9 m2 was obtained. Especially, at lower frequencies
the Darcy model still deviates from the experiments, which is currently investigated.

Note, that the absorption is a consequence of the acoustic attenuation by the porous
layer, the reflection and transmission at the first fluid-porous layer and the interaction with
the solid back plate. Therefore, further simulations for slightly varying sample thicknesses
(+3% and +6%) and air gaps of the cavity between the sample and the back plate are
shown in Figures 5(b) and 5(c) for κ = 0.84 ·10−9 m2, to predict the sensitivity. Increasing
the sample thickness enhances the absorption, similar to an increase in gap size, which
can be attributed to the Helmholtz resonance effect [26].
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Figure 5: Sound absorption coefficient for the three samples of the experiment, for
different configurations in the simulations, indicated by markers, and the JCAL model
fitted to experimental data.

4.4.3. Acoustic liner configuration

In this setup the incoming plane acoustic waves get diffracted at the edge and can
penetrate the porous medium, where they get attenuated. Additionally, waves are
reflected at both ends of the box, containing the porous sample, where a standing wave
can form. In the numerical simulations the excitation was implemented similarly to the
impedance tube, but this time both ends were equipped with non-reflecting boundary
conditions. Here, the porous layer was discretized by 41 elements. The acoustic
quantities have been observed to be unaffected by a further mesh refinement. For all
subsequent simulations the optimal value of κ = 0.84 · 10−9 m2 was used. In the first of
the three configurations considered, without mean flow (i.e. ū = 0 m/s), only one layer of
melamine foam was placed. In the following the results are juxtaposed in terms of the
anechoic transmission coefficient, as introduced in Chapter 3.3, in Figure 6. ()+ and ()−

refer in the experiments to the upstream and downstream positions of the loudspeaker,
respectively, which should coincide for ū = 0 m/s because of the symmetry of the setup.
The numerical model predicts the same trend, but with an offset to a larger transmission
of the incoming waves, suggesting the acoustic liner to be less effective.
In the second configuration with mean flow (ū = 30 m/s), the convection effect was
considered. For this case the mean flow field was computed by means of Equations 6, 11
and 12 beforehand. The instantaneous vorticity field and the velocity profils at two
locations over the height of the channel are shown in Figure 7. The mounted sample
in liner configuration abruptly expands the cross-sectional area and the hard solid



termination for the flow by the the no-slip boundary is replaced by a permeable layer,
which allows the partial intrusion of the fluid. It enables the formation of vorticities
at the fluid-porous shear layer. This is illustrated by the left velocity profile in
Figure 7(b), where a vortex is passing by. The mean flow field was used to predict the
wave propagation in the second CAA step. No other acoustic sources other than the
loudspeaker have been considered. Again an offset is observed between measurements
and the simulation. In both cases, the transmission is enhanced by the flow when it
goes in the same direction of the sound wave propagation of the signal emitted by the
loudspeaker. Only for very high frequencies the behavior is shifted, which is more
pronounced in the simulations.

The maximum attenuation occurs at high frequencies and is also related to the
thickness of the porous media. For this reason, the minimum of the curve can be moved
by acting on the samples. A second layer of melamine foam with a thickness of 15.5
mm and ū = 0 m/s was considered in the third test case, to further evaluate the predictive
behavior of the simulations. In this case the maximum attenuation occurs at about 2750
Hz in both, the experiments and the simulations, but for even higher frequencies the
model underestimates the transmission.
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(b) ū = 30m/s (Ma∞ = 0.09)

1000 2000 3000 4000
f [Hz]

0.2

0.4

0.6

0.8

|T
|

Transmission coefficient for v=0m/s (double)
|T+|
|T−|
|T |κ =0.84·10−9

(c) Double smaple

Figure 6: Transmission coefficients for the acoustic liner configuration of the
experimental measurements, the fitted JCAL model and for different configurations of the
simulations. ()+ and ()− indicate the two loudspeaker positions, upstream and downstream
of the tube.
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Figure 7: 7(a) shows the instantaneous vorticity, where the porous section extends from
x/Lre f = 0 to x/Lre f = 12.9. In 7(b) the velocity profiles at two locations indicated in 7(a)
by solid lines are given. The shaded area corresponds to the porous layer.



5. CONCLUSIONS

In the present work, a numerical model for the simulation of porous media was
presented, both to predict the flow field and acoustic wave propagation via the extended
APE system. The focus was on the later and the modifications due to the Darcy drag term
in the limit of low permeability Reynolds numbers. A theoretical analysis for the plane
wave case completed the derivation. The comparison of the model to experiments and the
JCAL model, which has been fitted to the experimental data, had been exemplarily shown
by means of the absorption coefficient in an impedance tube and the transmission of
acoustic waves inside an acoustic liner configuration. Both experiments and simulations,
suggest a separate calibration of the model for the use in a CFD simulation and in a CAA
simulation. In general, the tendencies are qualitatively well captured, but with an offset
indicating the numerical model to be less sound absorbing. The challenges arise from
acoustic quantities most suitably described in frequency-domain, but the need for an
equivalent acoustic response in models of time-marching schemes. This makes it harder
to match the experiments over a large frequency range.
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