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ABSTRACT 

Establishing the wave propagation characteristics at plate junctions is of great 

importance in the prediction of vibrational energy transmission across complex 

structures. A hybrid approach combining the finite element (FE) and the wave finite 

element (WFE) method at interconnects between flat, isotropic plates has recently 

been established for calculating reflection and transmission coefficients.  The 

method is based on modelling joints such as an L-shaped joint with FE with 

boundary conditions given by the solutions of the WFE method for the infinite plate. 

We extend this method to study two dimensional anisotropic plates. Numerical 

results for the bending wave transmission across coplanar and L-shaped junctions 

are presented. Comparisons of numerically predicted scattering coefficients with 

analytical solutions for selected structures are used to validate the model. The results 

obtained are important for Statistical Energy Analysis (SEA) and Dynamical 

Energy Analysis (DEA) based calculations of wave energy distribution of the full 

structure. 
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1. INTRODUCTION 

 

Knowledge of wave propagation characteristics such as dispersion relations and 

scattering coefficients at discontinuities in composite structures is of great importance 

for many engineering applications. Examples include structural health monitoring and 

passive noise control. In the simple case of isotropic materials, the analytical models 

describing dynamic vibro-acoustic behaviour of such structures can be found in [1,2]. 

However, when the structure is more complicated, for example, anisotropic layered 

plates, the analytical solutions then become very difficult to obtain at best. In such 

cases, numerical methods can be exploited. Finite Element Method (FEM) being the 

most commonly used tool for vibration analysis of complex structures becomes 

inappropriate when high frequency excitation is applied. This is due to impractically 

high computational costs.  

The Wave Finite Element (WFE) method was originally proposed by Mead [3] as a 

technique to study wave motion in periodic structures. For such structures, the dynamic 

vibro-acoustic behaviour of the whole structure can be described through the analysis of 

a single periodic segment [4]. Huge contribution to the analysis of wave propagation in 

various periodic structures using a FE model of a single periodic section has been made 

by Abdel-Rahman [5]. Dispersion curves for thin-walled structures, laminated plates 

and fluid filled pipes were obtained using WFE method in [6,7,8].  

Concerning the computation of scattering coefficients, the simple cases of isotropic 

plate junctions, plate/beam junctions and curved plates were modelled analytically using 

wave approaches in [2] and [9,10] by Langley and Heron. The hybrid FE/WFE method 

for calculating reflection and transmission coefficients was firstly introduced by Mencik 

and Ichchou for one-dimensional waveguides coupled longitudinally [11]. In recent 

years, the method has been developed and extended to other types of junctions [12] and 

to two-dimensional waveguides [13]. However, structures considered in those works 

were mostly isotropic or were consisting of layers of isotropic materials. In this paper, 

we extend the hybrid FE/WFE method to composite two-dimensional waveguides. 

The paper is organised as follows. In section 2 the WFE method for plates is 

reviewed. The hybrid FE/WFE method for computation of scattering coefficients in 

coupled plates is presented in section 3. Some numerical examples and their comparison 

to the analytical results are presented in section 4. Finally, conclusions are made in 

section 5. 

 

2.  WFE METHOD FOR TWO-DIMENSIONAL WAVEGUIDES 

 

As it was mentioned above, in the WFE method a periodic segment can be used for 

modelling the dynamic response of the whole periodic structure. Therefore, the size of 

the WFE model does not depend on dimensions of the waveguide and the computational 

cost of the method is low. For the sake of simplicity, consider a periodic element of an 

orthotropic plate which principal material directions coincide with coordinate directions 

as one presented in Figure 1. The periodic element is modelled using a rectangular three-

dimensional finite element with 3 translational degrees of freedom (DOF) per node with 

dimensions  𝐋𝐱, 𝐋𝐲 and  𝐋𝐳. In commercial FE software such as Ansys SOLID185 can be 

used for this purpose. Note that higher order finite elements with internal nodes may be 

used, however, the form of eigenvalue problem sought is reducible to the case without 

internal nodes via static or dynamic condensation (see [7] for details). The segment can 

be meshed through its thickness using any number of elements, here we use only one 



element for simplicity. Assuming time-harmonic dependence of the form 𝑒𝑖𝜔𝑡  and no 

external forces, one can write governing equations of motion in the following form: 

 

 [𝐊 + iω𝐂 − ω𝟐𝐌]𝐪 = 𝐟  (1) 

 

where 𝐊, 𝐂 and 𝐌 are stiffness, damping and mass matrices respectively, 𝐪 and 𝐟 are 

vectors of nodal displacements and forces which are of the following form: 

 

𝐪 =  [

𝐪𝟏
𝐪𝟐
⋮
𝐪𝟖

]    ,   𝐟 =  [

𝐟𝟏
𝐟𝟐
⋮
𝐟𝟖

] 

The harmonic plane waves travelling in some direction 𝜃  possess two components 𝑘𝑥 =
𝑘 cos 𝜃  and 𝑘𝑦 = 𝑘 sin 𝜃  of the wavenumber  𝑘. Note that the wavenumber 𝑘 depends 

on the angle of propagation as well as its components in contrast to the isotropic material 

case. Assuming free wave propagation, one can impose the periodicity condition in the 𝑦 

direction to reduce the dimension of the problem. Specifically, according to the node 

numbering convention in Figure 1, we can define a transfer matrix 𝐓 which relates the 

full vector of displacements to a reduced set as 

 {
𝐪1
𝐪2
⋮
𝐪8

} = 𝐓 {
𝐪1
𝐪2
𝐪3
𝐪4

} =  𝐓𝐪red  where   𝐓 =  

(

 
 
 
 
 
 

𝐈 𝟎
𝟎 𝐈 𝟎

𝟎 𝐈 𝟎
𝟎 𝐈

𝝀𝒚𝐈 𝟎

𝟎 𝝀𝒚𝐈 𝟎

𝟎 𝝀𝒚𝐈 𝟎

𝟎 𝝀𝒚𝐈)

 
 
 
 
 
 

 () 

 

where  𝐈 is a 3-by-3 identity matrix and 𝝀𝒚 = 𝒆
−𝒊𝐤𝒚L𝒚  – the propagation factor in the 𝑦 

direction. Hence, Equation 1 can be written in terms of the reduced DOFs as 

 

 �̃�𝐪red = 𝐟red   ,   where   �̃� = 𝐓
𝐻[𝐊 + iω𝐂 −ω𝟐𝐌]𝐓  and  𝐟red = 𝐓𝐻𝐟 () 

 

 
Figure 1: Segment of an orthotropic plate and its periodic element with node 

numbering convention. 



One can decompose the vector of nodal displacements and forces into parts associated 

with left and right cross sections so that Equation 3 can be rewritten as 

 

 [
�̃�𝐋𝐋 �̃�𝐋𝐑
�̃�𝐑𝐋 �̃�𝐑𝐑

] { 
𝐪𝐋
𝐪𝐑
 } = { 

𝐟𝐋
𝐟𝐑
 }  (4) 

 

where  𝐪𝐋 = {
𝐪1
𝐪2
}   and   𝐪𝐑 = {

𝐪3
𝐪4
} . The vector of nodal forces is arranged in the same 

manner. The form of the equation of motion obtained is identical to the one in the case of 

one-dimensional waveguides [12], only now the problem is reduced and all partitioned 

parts of the dynamic stiffness matrix �̃� depend on the component   𝐤𝑦   of the 

wavenumber  𝐤  to which one would need to set some fixed values. Further, utilising the 

periodicity conditions now in the 𝑥  direction which can be written as   

 

 𝐪𝐑 =   𝛌𝑥 ∙ 𝐪𝐋   ,   𝐟𝐑 = −   𝛌𝑥 ∙ 𝐟𝐋  (5) 

 

one can get the following eigenvalue problem for the unknown wave propagation 

constant  𝛌𝑥 

 

 𝐓 {𝐪𝐋
𝐟𝐋
} = λ𝑥 {

𝐪𝐋
𝐟𝐋
}  where  𝐓 =  [

−𝐃𝐋𝐑
−𝟏𝐃𝐋𝐋 𝐃𝐋𝐑

−𝟏

−𝐃𝐑𝐋 +𝐃𝐑𝐑𝐃𝐋𝐑
−𝟏𝐃𝐋𝐋 −𝐃𝐑𝐑𝐃𝐋𝐑

−𝟏
] (6) 

 

is the transfer matrix. However, this form of the eigenvalue problem may suffer from ill-

conditioning when the number of DOFs is high which regularly appear to be the case for 

anisotropic composite plates. Therefore, we used an alternative form of the eigenvalue 

problem which is based on symplectic properties of the transfer matrix (see [14,15] for 

details). Regardless of the eigenvalue problem posed, one can find the unknown 𝑥-

components  𝐤𝑥 of the wavenumber  𝐤  by using computed eigenvalues  𝛌𝑥 so that wave 

dispersion curves can be drawn.  

Since the transfer matrix is symplectic, the set of eigenvalues can be divided into 

reciprocal pairs as 𝜆𝑗
+ and 𝜆𝑗

− = 1/𝜆𝑗
+ with wavenumbers  𝑘𝑗

+ =
log (𝜆𝑗

+)

−𝑖𝐋𝐱
  and  𝑘𝑗

− = −𝑘𝑗
+ 

corresponding to positive-going and negative-going waves respectively [7]. The 

eigenvectors  𝜙𝑗
± = {

𝜙𝐪
±

𝜙𝐟
±
}

𝑗

 contain information about nodal displacements and forces 

under the propagation of the correspondent wave. These eigenvectors are called wave 

modes. The nodal displacements and forces can be expressed as a linear combination of 

the wave modes with amplitudes 𝑎𝑗 (see Equation 7). 

 

 [
𝐪
𝐟
] = ∑ (𝑎𝑗

+ [
𝜙𝐪,𝐣
+

𝜙𝐟,𝐣
+ ] + 𝑎𝑗

− [
𝜙𝐪,𝐣
−

𝜙𝐟,𝐣
− ])

8
𝑗=1 = [

𝚽𝐪
+𝐚+ +𝚽𝐪

−𝐚−

𝚽𝐟
+𝐚+ +𝚽𝐟

−𝐚−
]  (7) 

 

 

3.  HYBRID FE/WFE METHOD AND SCATTERING COEFFICIENTS 

 

In this section, we show how to compute the reflection/transmission coefficients of 

joints of finite size by using hybrid FE/WFE method. Basically, the method consists in 

modelling plates using WFE and the coupling element – using standard finite elements 

(see Figure 2). Then, by imposing continuity and equilibrium conditions at interfaces, one 



can compute the scattering matrix 𝐬 – the matrix which relate the amplitudes of incoming 

and outgoing waves as 

 

 {
𝐚1
−

𝐚2
−} = 𝐬 {

𝐚1
+

𝐚2
+}    ,   𝐬 = [

𝐫𝟏𝟏 𝐭𝟏𝟐
𝐭𝟐𝟏 𝐫𝟐𝟐

]  (8) 

 
Figure 2: A hybrid FE/WFE problem. Picture taken from [16]. 

The governing equation of the coupling element can be written as 

 

 [
�̃�𝑖𝑖 �̃�𝑖𝑛
�̃�𝑛𝑖 �̃�𝑛𝑛

] {
𝐐𝑖
𝐐𝑛
} = {

𝐅𝑖
𝐅𝑛
}  (9) 

 

where nodes at the interfaces between the plates and the joint are denoted by 𝑖 whereas 

non-interface nodes - by  𝑛. Assuming no external forces on the non-interface nodes, 

Equation 9 can be reduced to the form with only interface nodes involved via static or 

dynamic condensation. Imposing continuity of nodal displacements and equilibrium of 

nodal forces at the interfaces between the plates and the joint as  

 

 

𝐐𝑖 = 𝐑 [𝚽𝑸
+ {
𝒂𝟏
+

𝒂𝟐
+} + 𝚽𝑸

− {
𝒂𝟏
−

𝒂𝟐
−}]   ,   𝚽𝑸

± = [
𝚽𝐪
𝟏± 𝟎

𝟎 𝚽𝐪
𝟐±
]

𝐅𝑖 = 𝐑 [𝚽𝑭
+ {
𝒂𝟏
+

𝒂𝟐
+} + 𝚽𝑭

− {
𝒂𝟏
−

𝒂𝟐
−}]   ,    𝚽𝑭

± = [
𝚽𝐟
𝟏± 𝟎

𝟎 𝚽𝐟
𝟐±
]

 (10) 

 

 yields an expression for the scattering matrix as 

 

 𝐬 = −[𝐃𝒊𝒊 𝐑𝚽𝑸
− − 𝐑𝚽𝑭

−]
−1
[𝐃𝒊𝒊 𝐑𝚽𝑸

+ −𝐑𝚽𝑭
+]  (11) 

 

where 𝐑 = [
𝐑𝟏 𝟎
𝟎 𝐑𝟐

] – rotation matrix which transform the nodal displacements and 

forces from local coordinate systems of plates to the global one. If the inverse 

transformation in Equation 11 cannot be applied due to the singularity of the matrix 

considered, then one can use a pseudoinverse via singular value decomposition. Note that 

the scattering matrix 𝐬 depends on the angular frequency ω and on the angle of incidence 

𝜃 via tan 𝜃 =
𝐤𝑦

𝐤𝑥
. 

 

 

 

 



4.  NUMERICAL EXAMPLES 

 

Several example applications are presented in this section. Coplanar coupled isotropic 

plates are considered in the first example. Scattering coefficients for an L-junction of 

isotropic plates are computed numerically and compared with analytical ones in the next 

example. Finally, an example of an L-junction of orthotropic plates is given.  The choice 

of the first two numerical examples was motivated by the existence of analytical 

expressions for dispersion curves and scattering coefficients. 

4.1. Coplanar coupled isotropic plates 

In our first example we consider two isotropic plates coupled along the x-axis as shown 

in Figure 3. Plates have different material properties but same thicknesses (see Table 1).   

 

 
Figure 3 : Coplanar coupled plates. A plane wave impinges on a junction of plates 1 

and 2 and gives rise to reflected and transmitted waves.  

 Plate 1 Plate 2 

Young Modulus 𝐸 207 GPa  71.0 GPa 
Poisson’s ratio 𝜈 0.3 0.28 

Density 𝜌 7800 kg m3⁄  2700kg m3⁄  

Thickness ℎ 0.003 0.003 

Table 1 : Material parameters of isotropic plates. 

In Figure 4 power scattering coefficients with respect to the angle of incidence computed 

for an incident bending wave at the frequency f = 3 kHz are presented. There is no mode 

conversion into other wave types such as shear or pressure. One can notice that for all 

angles of incidence, the incident power is mainly transmitted to the second plate. 

Numerical results show a very good agreement with the semi-analytical results obtained 

from the work of Langley and Heron [9]. Furthermore, the fact that the sum of power 

reflection and transmission coefficients is equal to unity ensures the validity of results 

obtained. 



 

Figure 4 : Reflection and transmission coefficients of the incident bending wave in 

coplanar coupled plates at the frequency f = 3 kHz. 

4.2. L-junction of isotropic plates 

In this example, the structure is comprised of two identical isotropic plates with 

material parameters as of the plate 2 in the previous example. Plates are coupled at 90 

degrees as shown in Figure 5. 

 
Figure 5 : Two periodic elements of an isotropic plate are coupled with L-shaped joint. 

Figure is taken from [13]. 

 

Figure 6 shows how the power scattering coefficients of an incident bending wave vary 

with respect to the angle of incidence at the frequency f = 3 kHz. One can investigate the 

mode conversion phenomenon: an incident bending wave gives rise not only to bending 

reflected or transmitted waves but also to pressure and shear waves. However, this 

phenomenon is observed up to some angles which are known as critical angles. In the top 

right plot, one can notice that at angles higher than 3 degrees reflection and transmission 

from bending to pressure (B-to-P) are equal to zero. The critical angle of the bending to 

shear mode conversion (B-to-SH) is around 5 degrees (see the bottom right plot). At 

normal incidence, e.g. 𝜃 = 0°, the power is almost equally distributed between reflected 

and transmitted waves. Note that at critical angles for pressure and shear waves, reflection 

and transmission of the bending to bending type (B-to-B) undergo a change by which 

their values are decreasing or increasing instantly. As shown in Figure 6, the numerical 

results are in a good agreement with the semi-analytical ones from [9]. However, for 

higher frequencies the difference between numerical and analytical results increases (see 

Figure 7). 



 

Figure 6 : Power scattering coefficients for an incident bending wave in L-shaped 

isotropic plates at frequency 𝑓 = 3 𝑘𝐻𝑧, dimensionless wavenumber value 𝑘𝑏ℎ = 0.19. 

This can be referred to the fact that we used the analytical model based on the assumption 

that the joint can be represented as a shared line between plates. This assumption breaks 

down at higher frequencies since the influence of the joint size becomes larger. 

Particularly, the shear strain becomes more important on the dynamic response of the 

joint and this effect is not considered in the analytical model (see [17] for details). 

Nevertheless, the summation to unity of the power reflection and transmission 

coefficients validates the results obtained. 

 

Figure 7: Power scattering coefficients for an incident bending wave in L-shaped 

isotropic plates at frequency 𝑓 = 10 𝑘𝐻𝑧, dimensionless wavenumber value  𝑘𝑏ℎ =
0.35. 



4.3. L-junction of orthotropic plates 

Finally, an L-junction of two identical orthotropic plates is considered (see Figure 8). 

The material parameters chosen are presented in Table 2.  

 
Figure 8: L-junction of two orthotropic plates.  

 

𝐸𝑥 127 GPa 
𝐸𝑦 = 𝐸𝑧 11.3 GPa  

𝜈𝑥𝑦 = 𝜈𝑥𝑧 0.3 

𝜈𝑦𝑧 0.34 

𝐺𝑥𝑦 = 𝐺𝑥𝑧 5.97 GPa 

𝐺𝑦𝑧 3.75 GPa 

𝜌 1578kg m3⁄  

Thickness ℎ 0.003 

Table 2: Material parameters of the orthotropic plate. 

Figure 9 demonstrates the polar dispersion curves obtained for an orthotropic thin plate 

at the frequency f = 3 kHz. Note that the total wavenumber of retained waves depends 

on the angle of propagation. A very good agreement is observed between theoretical 

dispersion curves based on the Kirchhoff-Love plate theory and the ones obtained with 

WFE. These numerical dispersion relations can be used to calculate the group velocity 

angles and therefore propagation angles of transmitted waves via modified Snell’s law. 

 

 
 

Figure 9: Polar dispersion curves of the orthotropic thin plate at the frequency 𝑓 =
3 𝑘𝐻𝑧. Angle of propagation varies between 0 and 90 degrees. 



In Figure 10, the power scattering coefficients for the incident bending wave at the 

frequency 𝑓 = 3 𝑘𝐻𝑧 are plotted. At almost all angles of incidence, more than a half of 

the incident power is reflected to the first plate. At the critical angle for shear waves 𝜃 ≈
12°, the transmitted power instantly increases up to 90 percent of the incident power and 

then drops down after a small angle increment which appears to be odd, however, the 

overall behaviour of curves is like the one in the case of L-junction of isotropic plates 

(see Figure 6 and 7). A slightly different behaviour of power scattering coefficients is 

observed at higher frequencies (see Figure 11). At low angles of incidence, B-to-B 

reflected and transmitted power ratios do not change a lot, instead values of the scattering 

coefficients B-to-P and B-to-SH are increased. The critical angles for pressure and shear 

waves are higher than in the low frequency case. Also, around 80 percent of incident 

power is reflected to the first plate at angles higher than the critical angle for shear 

waves  𝜃 ≈ 20°. Note that the power reflection and transmission coefficients sum up to 

unity at all angles of incidence.  

 

 

Figure 10: Power scattering coefficients for an incident bending wave in L-shaped 

orthotropic plates at frequency  𝑓 = 3 𝑘𝐻𝑧, dimensionless wavenumber value  𝑘𝑏ℎ =
0.19. 

4.  CONCLUSION 

A hybrid FE/WFE model that predicts the scattering properties for different junctions 

of two-dimensional isotropic and anisotropic composite plates has been developed. The 

influence of the angle of incidence and of the frequency on the distribution of the power 

flow of incident bending type waves has been investigated. The results of this paper can 

be used for the computation of wave energy distribution in Statistical and Dynamical 

Energy Analysis. 



 

Figure 11: Power scattering coefficients for an incident bending wave in L-shaped 

orthotropic plates at frequency  𝑓 = 10 𝑘𝐻𝑧, dimensionless wavenumber value  𝑘𝑏ℎ =
0.5. 
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