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ABSTRACT 

This work proposes an analytical method to analyse the bandgap location and width 

of membrane-type metamaterial when it is attached to a thin plate structure. This 

method enables the bandgap prediction of such a structure by adjusting the tensile 

stress of the membrane directly. The accuracy of the model is verified by 

constructing a finite structure model for numerical simulation and comparing the 

results. It shows that the results given by the analytical model are primarily 

consistent with the simulation. The effect of membrane tensile stress and attached 

mass on the bandgap location and width is also investigated. It is found that the 

width of bandgap can be increased by increasing the membrane tensile stress and 

using a heavier mass attached to the membrane.   
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1. INTRODUCTION 

Metamaterials are manually engineered materials that have peculiar effective material 

properties that are not available in natural materials [1]. For acoustic/elastic 

metamaterials, their ability in attenuating the transmission of wave has attracted many 

research efforts. Membrane-type metamaterial is one type of acoustic metamaterial that 

was first proposed by Yang et al. in 2008 [2]. For acoustic metamaterials, local resonance 

is required for generating bandgaps. The unit cells of membrane-type metamaterials are 

normally formed by elastic membranes attached with lumped mass and stretched over 

rigid frames. Such a structure is schematically equivalent to a mass-spring resonator and 

thus similar to other types of metamaterial, where it possesses local resonance bandgaps 

in resonance frequency range. The location of bandgap is decided by the resonance 

frequency of the unit membrane-type resonator.  

This membrane-type metamaterial can be used for sound isolation, energy harvesting 

and vibration absorption, with the corresponding effectiveness of their applications have 
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been studied [3, 4, 5]. Mei et al. [6] used specially designed platelets to decorate the 

membrane and illustrated that their design with single layer membrane can absorb 86% 

of the acoustic wave around the resonance peak frequency, whilst the double layer design 

can absorb 99%. Naify et al. [7] examined both single-cell resonator’s and multi-cell 

resonator’s behaviour at low frequencies (below 200Hz) and proved that the membrane-

type resonators can achieve much higher transmission loss than the prediction based on 

the mass-law. Otherwise, Liang Sun conducted experiments to study the membrane-type 

resonator’s capability in structural vibration control. The results showed that the 

membrane resonator can effectively reduce the rectangular plate’s vibration magnitudes 

by up to 42 dB [8].  

In addition, for actual applications, the operation frequency of the metamaterial may 

vary according to the incident wave characteristics. Therefore, to achieve an agile 

bandgap location, some researchers have investigated the potential methods to tune the 

bandgap of membrane-type metamaterial. Langfeldt et al. [9] proposed an inflatable 

membrane structure, through which the stress within the membrane can be adjusted by 

the extent that the membrane is inflated and thus the bandgap location of the metamaterial.  

Chen et al. [10] proposed a membrane-type metamaterial that was magnetically 

controllable. The resonant frequencies of the unit cell can reach up to about 64% higher 

when the magnitude of input magnetic field is increased.   

In the previous research on membrane-type metamaterials, the focus points were 

mainly about the effectiveness in different application fields or tuning of the bandgap 

properties. The prediction of the resonance frequencies of the designed membrane 

resonators before the actual fabrication, was normally conducted using finite element 

methods (FEM). For membrane-type metamaterial applications, it is necessary to know 

the  bandgap properties in advance and to enable the proper design of membrane resonator 

parameters (tension stress, mass magnitude etc.) in accordance to the requirement. 

However, the utilization of FEM can be time consuming. As a result, an accurate and 

rapid model that can reveal the effect of resonator parameters on bandgap properties can 

be a useful tool for the design of membrane-type metamaterial. 

In this paper, we proposed a model that can provide a prediction of bandgap properties 

of membrane-type metamaterial when it is applied to a thin plate structure. The model 

can be used to investigate the changing of bandgap properties of the membrane-type 

metamaterial on a thin plate, by modifying the attached mass or tuning of the membrane 

tensile stress.  The model verification is carried out by commercial FEM software 

COMSOL Multiphysics.   

 

2.  MODEL AND FORMULATIONS 

2.1 Estimated resonance frequency of a membrane-type resonator 

The resonance frequency of membrane-type resonator can be estimated by the 

Rayleigh-Ritz method, which has been shown to provide a reasonably accurate estimation 

[11]. The structure of a membrane-type resonator can be schematically depicted as in 

Figure 1. The length and height of the host frame and membrane are denoted as 𝐿, 𝐻, 𝑙 
and ℎ , respectively. The mass is assumed to be concentrated at a certain point at 

coordinates (𝑎, 𝑏).  



 
Figure 1. Configuration of a membrane-type resonator 

The expressions for the strain energy and kinetic energy of the resonator can be given 

as [11]:  
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where 𝐷 is the bending stiffness of the membrane: 
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 𝐸, 𝑡 and 𝑣 are the Young’s modulus, thickness and Poisson’s ratio of the membrane 

respectively; 𝑇 is the tension stress per unit length on membrane; 𝑚𝑅(𝑎, 𝑏) is the mass 

located at coordinates (𝑎, 𝑏) ; 𝑚𝑠  is the membrane mass per unit area; 𝑤(𝑥, 𝑦)  and 

𝑤(𝑎, 𝑏) are the transverse displacement of the membrane and mass at the indicated 

coordinates; 𝜔  is the natural frequency of the resonator.  

Based on equations (1) and (2), the natural frequency can be estimated as: 
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The following mode shape function is used for estimating the natural frequency [11]: 
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For a membrane-type resonator, we mainly focus on the first order resonance 

frequency. Substituting the corresponding mode shape function into equation (4), the 

membrane-type resonator’s lowest natural frequency is given as: 
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2.2 Dispersion relation 

To obtain the dispersion relation curve of the system, the Plane Wave Expansion 

(PWE) method is used. This method is proved to be able to provide an accurate prediction 

for dispersion relation of a thin plate structure with the periodically attached spring-mass 

resonators [12]. As the membrane-type metamaterial can be simplified as spring-mass 

resonators, the PWE method is utilized in this work to predict the bandgap property.  

As illustrated in the previous discussion, the first order resonance frequency of the 

membrane resonator can be derived, and the mass magnitude is already known. As the 

result, according to the equation 𝜔𝑛 = √
𝑘𝑅

𝑚𝑅
, the equivalent stiffness of the unit cell can 

be obtained.  

 

 
Figure 2. Configuration of a thin plate with periodically attached membrane-type metamaterial 

The system configuration can be simplified as Figure 2. According to the dimension 

of membrane resonator frame, the outer dimension of a single unit cell is 𝐿 × 𝐻. 

The equation of motion for the system can be given by these equations:  
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where  (𝑥, 𝑦) and (𝑋, 𝑌) are the coordinates of points on the plate and the location of 

resonators, 𝑤1(𝑥, 𝑦) and 𝑤2(𝑋, 𝑌), are the transverse displacements of plate and resonator 

at different points. Here, 𝑓1  and 𝑓2  are forces that are applied on the thin plate and 

resonator masses, while 𝛿 is Dirac function. Applying the Bloch theorem and changing 

the coordinates of points into a lattice vector, the equation of motion can be transformed 

into the matrix form [12]. The equation can then be solved by applying a truncation in the 

plane wave number series. The mass magnitude and the equivalent stiffness are integrated 

into the equation and can therefore reveal the effect to the bandgap structure.   

 

3.  RESULTS AND DISCUSSION 

3.1 Bandgap of an infinite structure 

In PWE model, the structure is assumed to have periodical boundary conditions. As 

the result, the calculated bandgap is based on an infinite structure configuration. In this 

section, examples of membrane resonators with various mass and tension stress are 



considered. The corresponding change of the bandgap location and width are 

investigated.  

The parameters of the membrane resonator are indicated in Table 1. The mass is 2.7g 

and it is attached in the middle of the resonator. The materials for membrane and frame 

are chosen as silicon rubber and epoxy, respectively. The parameters of the plate where 

the resonators are attached to, are defined as: Young’s modulus 𝐸 = 200𝐺𝑃𝑎; Poisson’s 

ratio 𝑣 =0.3 and density 𝜌 =7850 kg/m3. The thickness of the plate is 2mm, which is 

smaller than the flexural structural wavelength of interest.   

 
Table 1. Parameters of the membrane resonator 

Membrane Frame Mass 

Young's modulus (MPa) 1.9 Young's modulus (GPa) 2.65 Magnitude (g) 2.7 

Poisson's ratio 0.48 Poisson's ratio 0.41 Radius (mm) 5 

Density (kg/m3) 980 Density (kg/m3) 1100 Height (mm) 4 

Thickness (mm) 0.2     

𝑙 (mm) 50     

ℎ (mm) 50     
 

In order to examine the effect of tension stress to the membrane resonator, the applied 

stresses to the membrane are set as 2MPa, 3MPa, 6MPa and 10MPa, respectively. The 

bandgap structures of the resonator with different stress are shown in Figure 3.  

 

 
Figure 3. Bandgap structure of membrane-type metamaterial with (a) 2MPa, (b) 3MPa, (c) 6MPa and (d) 10MPa 

applied stress.  The inset presents the corresponding Brillouin zone.  

According to Figure 3, the bandgap shifts to a higher frequency range as the stress 

level is increased. When 2 MPa stress is applied to the membrane, a full narrow bandgap 

exists between 116.3 – 119.1 Hz. Once the stress is increased to 10 MPa, the bandgap 

shifts to 259.8 – 266.1 Hz. The changing trend of bandgap fits the pattern of the bandgap 



change for membrane-type metamaterial. The detailed location of the bandgap and width 

are provided and compared with the simulation results in following section. 

Moreover, the adjustment of mass attached to the membrane is investigated. Three 

different masses are used in this study: 2.7g, 5.4g and 10.8g, respectively while the 

membrane tensile stress is set at 2 MPa. The corresponding bandgap structure is given in 

Figure 4. The 2.7g example is the same as Figure 3(a). According to the figure, the 

bandgap location increases when a lighter mass is used, which is consistent to what has 

been found in previous research [13].   

 

 
Figure 4. Bandgap structure of membrane-type metamaterial with attached mass of: (a) 5.4g and (b) 10.8g. The 

bandgap range: (a) 82.7 – 86.6 Hz and (b) 58.7 – 64.1 Hz.  

 

3.2 Finite structure and numerical simulation 

A finite structure model is constructed to verify the accuracy the proposed theoretical 

method. As shown in Figure 5, a thin steel plate is attached with 5 × 5 unit cells of 

membrane-type metamaterial. The dimension of the thin plate is 500 × 300 × 2mm, and 

the outer dimension of one unit cell is 60 × 60mm.  

 
Figure 5. Configuration of finite structure 

In order to examine the bandgap performance of the structure, the frequency domain 

analysis is conducted on the model. In the theoretical model, the structure is assumed to 

be an infinite structure. However, this cannot be realized in the actual application so a 

certain number of periodicity is required to let the finite structure generates the bandgap 

behaviour. In this work, we adopted 5 by 5 unit arrays which is considered to be enough 

for the bandgap forming. The left edge of the plate is fixed and transverse excitation signal 

is applied from the right edge, while the response signal is picked up from point A. Other 

boundary conditions of the structure are set as free boundary conditions and the biaxial 

pre-stress condition is applied to the membrane. The properties of the membrane 

resonator are as described in Table 1.  



The frequency scanning range is set from 50 to 300 Hz and the membrane tensile 

stresses are set as 2 MPa, 3 MPa, 6 MPa and 10 MPa, respectively. The results are 

described in Figure 6.  

 
Figure 6. Frequency response of a plate with attached membrane-type metamaterial. The response curves of the 

membrane resonator applied with different membrane tensile stress is presented by: Blue line (2MPa); Red line 

(3MPa); Black line (6MPa) and Green line (10MPa).  

As shown in the figure, the bandgap ranges are: 118.4 – 121.8 Hz (2 MPa), 144.8 – 

148.6 Hz (3 MPa), 203.4 – 208 Hz (6MPa) and 260 – 267 Hz (10 MPa). It can be observed 

that the vibration transmission in the bandgap range is efficiently attenuated within this 

bandgap range. As expected, the resonance frequency increases as the membrane tensile 

stress level is increased. In addition, the bandgap width also increases as a higher level of 

stress is applied to the membrane.  

The effect of decorated mass attached on the membrane is further investigated. In the 

finite structure, the membrane tensile stress level is kept at 2 MPa while the mass is 

changed to either 2.7g and 10.8g. Figure 7 shows the results where the bandgap ranges 

are: 118.4 – 121.8 Hz (2.7g) and 59 – 66 Hz (10.8g).  The results are similar to the 

theoretical results given in the former section, with the bandgap width increases as heavier 

mass is used, while the bandgap location decreases as expected. 

 
Figure 7. Frequency response of plate when the decorated mass is 2.7g (Red line) and 10.8g (black line).  
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The bandgap structure worked out by the proposed analytical method and numerical 

simulation are presented in Table 2.  
Table 2. Bandgap property data comparison: Analytical model versus Finite Element Method simulation 

Stress (MPa) 2 3 6 10 

  Analytical FEM Analytical FEM Analytical FEM Analytical FEM 

Upper edge (Hz) 119.1 121.8 145.8 148.6 206.1 208 266.1 267 

Lower edge (Hz) 116.3 118.4 142.4 144.8 201.3 203.4 259.8 260 

Band width (Hz) 2.8 3.4 3.4 3.8 4.8 4.6 6.3 7 

Mass (g) 2.7 10.8         

 Analytical FEM Analytical FEM     

Upper edge (Hz) 119.1 121.8 65.4 66     

Lower edge (Hz) 116.3 118.4 58.7 59     

Band width (Hz) 2.8 3.4 6.7 7         

 

As shown in Table 2, the bandgap location and width estimated by the proposed analytical 

method is basically consistent with the numerical results. Small amount of error exist, yet within 

an acceptance range. Therefore the proposed analytical model is accurate enough to predict the 

bandgap properties of membrane-type metamaterial attached to a thin plate.  

 

4.  CONCLUSIONS 

In this work, an analytical method has been proposed to predict the bandgap properties 

of membrane-type metamaterial that is periodically attached to thin plate. Using the 

developed method, the effect of changing the membrane tensile stress level and the 

attached mass on the bandgap characteristics, is investigated. It is found that the increase 

of membrane tensile stress can lead to the increase of bandgap width and the shifting of 

bandgap location to higher frequencies. It is also observed that the use of heavier 

decorated mass increases the bandgap width, while the bandgap location is shifted to 

lower frequencies. Results from the analytical model are compared with numerical 

simulation results. It is found that the results are consistent, demonstrating the accuracy 

of the developed analytical model.  The model allows the parameters of membrane-type 

metamaterial to be adjusted directly, and is able to predict the change in the corresponding 

bandgap characteristics rapidly. This is in contrast to numerical models (e.g. FEM-based 

models) that can take much longer to calculate the results. Therefore, the developed model 

can be used as an effective tool for the design of membrane-type metamaterial.   
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