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ABSTRACT 
Discrete structure that implements approximately the vibrational black hole effect 
for flexural waves is proposed. It is a rod/plate with grooves whose depth increases 
gradually. The bending stiffness of such a structure gradually decreases, while the 
linear mass remains constant. The dependences on parameter change, at which the 
structure behaves similarly to the vibrational black hole and the exact analytical 
solution of corresponding equation are found. 
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INTRODUCTION 

Various structures, which are focused on the absorption of flexural waves are 
investigated (see [1 - 6], for example) in the extensive literature on vibrational black 
holes (VBH), The basis of such structures is a sharpened according to the power law the 
rod/plate. At the exponent of power law n≥2, the velocity of flexural waves propagation 
for sufficiently high frequencies when approaching the edge of the sharpness tends to 
zero. The wave that entered the initial thick section of rod does not reach the end of the 
sharpness in any finite time. This feature provides, from the theoretical point of view, 
effective absorption of the wave. In practice, the ideal sharpening up to a zero thickness 
is unrealizable. Therefore, for effective absorption, a small amount of absorbing 
material must be added to the tip of the sharpening (see for example [2]). Other 
opportunities for effective work imperfect black hole - scattering on the irregularities 
sharpened edges [3,4], nonlinear effects [5,6] have been discussed. In this paper, we 
propose a VBH design for flexural waves in the rod. This design does not require 
sharpening the end of the rod to very small thicknesses for practical implementation.  
 
DESIGN 

A sketch of the considered BH is shown in fig.1. The grooves are deposited on 
the initially homogeneous rod with thickness H  and length L . The depth of the 

grooves )(xh gradually increases 

by approaching the end of the rod. 
The groove, obviously, "softens" 
the rod, reducing the local bending 
stiffness. As a consequence, 
flexural wave velocity propagation 
decreases and black hole effect 
appears. In the general, the 
displacement field in such a 

Fig.1. Sketch of BH for bending  oscillations. 

H  h(x)

L x



construction can only be found numerically. The following approach is proposed as a 
reasonable analytical approximation.  

 
ANALYTICAL SOLUTION 

It allows homogenizing the discrete structure of the design with grooves. The 
starting point of the consideration is the standard equation of flexural vibrations of the 
inhomogeneous rod for transverse displacements )(x : 
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 , E - the density and Young's modulus of the rod material, )(xS - the cross-sectional 

area, )(xI - the moment of inertia of the cross-section. The first term in (1) describes 

the force of inertia, the second term – the bending moment associated with the 
stretching/compression of the layers of the rod. For a rod with a rectangular cross-

section of width  and thicknessa s , saS  , 
3sa 
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I  . In the proposed 

calculation method, it is assumed that the presence of grooves in the rod ensures the 
absence of tensile/compressive stresses in the layers between the grooves. This means 
that the gap between the opposite grooves 2)( xhHxs  should be substituted 

to )(xI . If the depth of the grooves is increased, the effective cylindrical stiffness of 

such a grooved rod is decreased. On the contrary, the linear mass of the rod will be 
constant. Equation (1) is rewritten as 

0]"")(
12

1
[ 32   xsEH .                                       (2) 

Following papers [1, 7], we consider further the power dependence of )(xs : 
)/()( LxHxs                                                           (3) 

and the power dependence of solution )(x : 
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Substituting (3, 4) into (2), we obtain: 
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After differentiating in (5), we get: 
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Equating in (7) exponents, we obtain the expression for   : 
3/4                                                                          (8) 

Substituting (8) into (6, 7), we obtain the equation for the exponent   : 
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Change of variable is used to solve the algebraic equations of the fourth order (9): 
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which, when substituted in (9), gives the biquadrate equation for   : 
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Solving this equation, and substituting the solutions in (11), we obtain expressions for 
exponents in solutions (4): 
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The obtained formulas (3, 8, 10, 12) are similar to the formulas in [7], which describe 
the standard VBH – parabolic sharpened rod. It can be easily verified that for low 
frequencies ( ) all the roots of eq. (12) are real. Vibrations are in phase at all points 
of the rod, wavelike motions are absent. In the other limiting case high frequencies (

0b
b ) 

eq. (12) yields two real roots and two complex conjugate roots. The complex roots correspond 
to propagating waves, and the real roots, to evanescent waves, similar to the case of 
homogeneous rod. The critical value of  , which corresponds to the appearance of an 
imaginary component, is 
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The corresponding critical frequency is 
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/EcY   is propagation velocity of  the longitudinal Young waves in a rod. 

It should be mentioned, that for standard VBH in the form of parabolically sharpened rod, the 

critical frequency par*  (eq. (17) in [7]) is five times higher:   
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It follows from the formula (3), that the thinning of the 

p
evidently, 

f groove 

uncut part of the rod 
3/4~)( xxs  is slower as 

compared to the thinning of 
nal VBH [7] 

2~)( xxh . The profiles are 

com ared in fig. 2. It is 
that the profile of 

the envelope o  the in 
the terminal part of the VBH 
(curve 2) does not require 
such precision in 

the traditio
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Fig.2. Comparison of standard VBH and discrete VBH. 
1 parabolic sharpening of the standard VBH;  
2 the envelope of discrete grooves of suggested VBH;  
3 the grooves in discrete BH. 



manufacturing as parabolic profile of standard VBH (curve 1). 
 
CONCLUSIONS  

ote two advantages of the proposed design. The first one is strong 
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