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ABSTRACT

Analytical and numerical models for sound propagation within a bounded
domain are commonly developed in the frequency domain. Time-domain models,
however, are an interesting alternative when studying transient effects, non-uniform
motion and for auralization purposes. Recent developments have been proposed to
include the effect of time-domain locally-reacting impedance into the pressure field
solution. While the direct wave frequency for harmonic source remains unmodified,
the frequency of the acoustic wave reflecting on the ground is modified due to the
source motion. This work proposes a study of the influence of different ground
models in the sound propagation from a moving monopolar source. The model
relies on the transient time delayed Green’s function formulation which extends
the result of classical Doppler Weyl-Van der Pol equation for arbitrary velocity.
The wave reflecting on the ground is accounted for using an image source with
its amplitude attenuated according to a dopplerised frequency ground impedance
model. A comparative study is proposed and applications to real scenarios are
presented.
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1. INTRODUCTION

Pavements are a major contributor of sound propagation in urban environments. Due
to an ever increasing desire for noise reduction on roads, new tools have been created
to characterize the acoustic behaviour of roads. Road noise is a complex phenomenon
involving sound from different sources. For instance, tire-road interaction is closely
dependent on the nature of the road surface, whereas wind noise and noise generated by
the vehicle engine, power unit, exhaust are independent from the road properties. Despite
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the absence of physical contact with the road, the perceived noise from the latter sources
is still affected by road properties by means of sound reflection.

For this reason, the influence of ground impedance on outdoor sound propagation
must not rely on a simplified classification of ground surfaces as soft or hard [1]. The
acoustic properties of pavements present inherent features worthy of attention. For
instance, porosity is very low compared with other typical acoustic materials [2]. Also,
road properties can vary drastically with time. Small imperfections and damages to the
road surface caused by different weather conditions make it challenging to model and
characterize its properties.

Analytical and numerical models for sound propagation within a bounded domain
are commonly developed in the frequency domain. However, time-domain models are
an interesting alternative when studying transient effects, non-uniform motion and for
auralization purposes. The advantage of a time-domain synthesis is that signals in the
time domain enables directly sound quality analysis which has become more important
with advances in electrical vehicles and the use of psychoacoustic metrics.

This paper deals with the influence of the influence of ground model properties on the
sound propagation from a moving monopolar source. A common simplification of the
multiple sources representing the car’s component is to consider each component as a
combination of monopole sources given that the source-receiver distance is sufficiently
large to satisfy the far-field condition. This approach has been utilized in the audio source
quantization in combination with a transfer path analysis [3].

The model relies on the transient time delayed Green’s function formulation which
extends the result of classical Doppler Weyl-Van der Pol equation for arbitrary velocity
and on modelling of complex ground reflection by using an image source. First, a brief
introduction of the mathematical formulation is presented. Then, a simulated example is
shown considering the different scenarios focusing on the influence of the moving source
on the variation of ground parameters.

2. ACOUSTIC RESPONSE OF A MOVING POINT SOURCE ABOVE A
SOUND-ABSORBING SURFACE

In this section, the formulation of the acoustic field resulting from a point source with
arbitrary speed and arbitrary trajectory moving above a frequency-dependent ground is
presented. The geometry of the problem is shown in Fig. 1. The goal is to obtain the
acoustic pressure at any fixed receiver position r = (x, y, z) ∈ R3. The source position
is denoted rs(t) = (xs(t), ys(t), zs(t)) ∈ R3 with t ∈ R. We begin with the solution of
the pressure field in an unbounded domain then, later on, the effect of the ground is
considered.

Consider the lossless scalar wave equation in an unbounded domain, the velocity
potential ϕ satisfies (

∇2 −
1
c2

∂2

∂t2

)
ϕ(r, t) = −S (r, t), (1)

where c is the speed of sound, ∇ is the partial spatial derivative operator and S (r, t) =

s(t)δ [r − rs(t)] is the source distribution density, δ [r − rs(t)] is the 3D Dirac distribution
and s(t) is the source strength (or signature). It follows that the velocity potential can be



Figure 1: Non-uniform non-rectilinear monopole source motion described by rs(t) and
v(t). The source emits pulses at a certain rate which propagate through the medium. The
first direct pulse to hit the receiver at instant t was emitted at time t − τ and the first
reflected pulse was emitted at t − τ̃ where τ and τ̃ are the time delay for the direct and
reflected pressure wave respectively.

obtained by means of a time convolution operation as [4]

ϕ(r, t) =
s(t − τ)

4π||r − rs(t − τ)|| −
[
1
c

v(t − τ) · (r − rs(t − τ))
] , (2)

where v is the source velocity and s(t − τ) is the delayed source signal, where time delay
τ which can be obtained by the following implicit relation

τ(r, t) =
||r − rs(t − τ)||

c
. (3)

Differentiating Eq.(2) with respect to time, we can retrieve the pressure field as

p(r, t) =
1

4π


ṡ(t − τ)R(t)[

R(t) −
1
c

v(t − τ) · R(t)
]2

+
s(t − τ)R(t)[

R(t) −
1
c

v(t − τ) · R(t)
]3

(
v(t − τ) · R(t)

R(t)
+

a(t − τ) · R(t)
c

+
[v(t − τ)]2

c

) , (4)

where the shorthand notation R(t) = r− rs(t− τ) is used and R = |R|. Note that except for
a sign difference on the last term, Eq. (4) is the one obtained in Ref. [5].

For the arbitrary velocity case, the exact solution for the propagation time delay
in Eq. (3) cannot be obtained explicitly since the nonlinear relation requires the prior
knowledge of the position at current delay. For this reason a numerical approximation is
employed considering the first-order Taylor expansion [6]

τ(r, t + dt) ≈ τ(r, t) + dt
dτ(r, t)

dt
, (5)



2.2.1. Moving source with uniform velocity

Assuming the source is moving along the x-axis, the source position is given by rs(t) =

(x0 + vxt, 0, 0), with initial position x0 and constant source velocity vx. Eq. (4) reduces to
the classical Doppler Weyl-Van der Pol equation [7]

p(r, t) =
1

4π

{
ṡ(t − τ)R

[R(1 − Mx cosϑ)]2 +
s(t − τ)Rv(cosϑ + Mx)

[R(1 − Mx cosϑ)]3

}
, (6)

where ϑ is the angle between the velocity vector v and the source-receiver distance vector
R. Note that the Mach number Mx = vx/c is time-invariant.

In this simple case, an analytical expression for the time propagation delay is given by

τ =
Mx(x − vxt) +

√
(x − vxt)2 + (y2 + z2)(1 − M2

x)
c(1 − M2

x)
, (7)

2.2.2. Moving source above a frequency-dependent ground impedance

Equation (4) describes the pressure field of a moving source for an unbounded domain.
In order to consider the effect of the ground, the boundary conditions must be satisfied. At
each receiver location, the direct and reflected fields superpose, with the latter accounting
for the complex dopplerised frequency-dependent surface impedance Z. This assumes a
locally-reacting ground [8, 9].

For a bounded domain, we introduce the reflected field as resulting from an image
source. Furthermore, by considering the correction for spherical waves [10] as a reflection
operator q, we can describe the total pressure field in the time domain as the superposition
of the direct and reflected fields as

ptotal(r, t) = p(r, t) + q(t) ∗ p̃(r, t), (8)

where q(t) = F−1{Q(ω̃)} is the inverse Fourier transform operator of the spherical wave
reflection coefficient and p̃(r, t) ≡ p([r|r̃s(t − τ̃)], t) is calculated considering the virtual
source r̃s(t− τ̃) at each delayed instant time τ̃. Notice that the image source’s propagation
time delay is not the same as the original source due to the difference in distance traveled
by the direct and reflected pressure field. Accordingly, the propagation time delay from
the image source is the one considered for the ground reflection analysis.

The spherical wave reflection formulation is an approximation by a uniform asymptotic
expansion combining the steepest descent and pole subtraction method [11] and is given
by Q(ω̃) = Rp(ω̃) + [1 − Rp(ω̃)]F(ε̃) where F(ε) is the boundary loss factor, ε̃ = ε(ω̃) is
the complex numerical distance and ω̃ is the Doppler-corrected circular frequency given
by [2]

F(ε̃) = 1 + j
√
πε̃ exp(−ε̃2)erfc(− jε̃) (9)

ε2(ω̃) = 2 jk0χ
2(ω̃)

||r − r̃s(t − τ̃)||

Z(ω̃)
[
1 − Rp(ω̃)

]2 (10)

ω̃ = ω
R(t)

[R(t) −M(t − τ) · R(t)] ,
(11)

where the term multiplying the circular frequency in Eq.11 is known as the Doppler factor.



The plane wave reflection of a moving source is defined as Rp(θ̃; ω̃) which is calculated
at the emission time of the reflected wave and depends on the angle of incidence θ̃ =

θ(t − τ) calculated at emission time

Rp(θ̃; ω̃) =
Z(ω̃) sin θ̃ − χ(ω̃)
Z(ω̃) sin θ̃ + χ(ω̃)

, (12)

where Z(ω̃) ≡ Zeq(Υ; ω̃)/ρc is the frequency-dependent equivalent impedance and
Zeq(Υ; ω̃) is the characteristic ground impedance. The parameter Υ represents the ground
properties that vary depending on the model chosen and the parameter χ is given by

χ(ω̃) =

√
1 −

(
k0

k

)2

cos2 θ̃, (13)

where k0 = ω̃/c is the wavenumber in air. Note that the impedance models can account
for different physical phenomena, and therefore a direct comparison is not attempted.
Instead, the influence of individual parameters on the excess attenuation by the ground
is investigated hereafter. The chosen ground model for this analysis is the Hamet model
which is a three-parameter phenomenological model commonly used to characterize road
pavements [12] and is described in frequency domain by its equivalent density and bulk
modulus as follows

ρ̃eq(ω) =
ρK
φ

(
1 − j

ωµ

ω

)
(14)

K̃eq(ω) =
ρc2

φ

1
1 − (1 − 1/γ)/(1 − jωθ/ω)

(15)

with

ωθ =
σ

ρPr
, ωµ =

σφ

ρK
(16)

where ρ is the air density, Pr = 0.71 is the Prandtl number for air at room temperature
and γ = 1.4 is the air heat capacity ratio. The ground parameters are the porosity φ, the
shape factor (or structure factor) K and the flow resistivity σ.

One can obtain the characteristic ground impedance and ground wave number as
follows

Zeq =

√
ρ̃eqK̃eq, k = ω

√
ρ̃eq/K̃eq. (17)

The transformation of such a frequency-dependent model to time-domain is not
trivial due to the causality and stability of the system, for which certain conditions must
be verified. Dragna et. al [13] investigated the admissibility of rigidly backed layers
described by a surface impedance of the square-root family such as the Hamet model,
where they showed its physical admissibility for time-domain transformation.

3. SIMULATED MOVING SOURCE IN A PASS-BY-NOISE SCENARIO

In this section we simulate different cinematic conditions of a moving source above a
frequency-dependent ground and we evaluate the sensitivity of the model to the ground
parameters. In this example, we consider that the point source is moving according to



a standard pass-by noise test. The source emits only single harmonic frequencies for
simplicity. The receiver is located at the fixed position r = (xmid, 7.5, 1.2) m, where
the x-axis receiver position is at middle position and hence, it depends on the cinematic
condition considered. The source is moving in a straight path with constant or accelerating
speed rs(t) = [vxt + (1/2)axt2, 0.0, 0.5] m, where ax is the acceleration in the x-axis.
The parameters for the Hamet ground model were chosen arbitrarily: φ = 0.1, K = 10,
σ = 105 kPa · s ·m−2.

The ground reflection can be evaluated by means of the instantaneous sound
pressure level (SPL) and the instantaneous excess attenuation (IEA). The definition of
instantaneous sound pressure level is [14]

SPL(t) = 10 log10
1
∆t

∫
∆t

p2(t)
p2

0

dt. (18)

The instantaneous excess attenuation is defined as the difference between the sound
pressure level in a bounded domain and the sound pressure level in a free field condition.
In other words, it measures how much the ground reflect impact the sound pressure level.

IEA(t) = S PL − S PL f f = 10 log10
1
∆t

∫
∆t

p2(t)
p2

A, f f (t)
dt (19)
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Figure 2: SPL and EA for two cinematic conditions: ( ) constant velocity vx = 14
m · s−1 and ( ) accelerating ax = 10 m · s−2. The SPL without reflection for both cases
is shown in dashed lines ( ). The source emits a harmonic signal at f = 200 Hz and
the sample time is 3 s.

In Fig. 2, two cinematic conditions are considered: constant velocity vx = 14 m · s−1

and accelerating ax = 10 m · s−2. The receiver is fixed at r = (21, 7.5, 1.2) m and



the source emits a single frequency signal at 200 Hz. Figure 2(a) shows the sound
pressure level. A symmetric instantaneous sound pressure level can be seen for the
constant velocity case with a peak when the source crosses the receiver position, which
occurs at different times depending on the speed. For the accelerating case, the sound
pressure level increases gradually and its peak value occurs 0.5 s later than the constant
velocity case because the moving source takes longer to cross the receiver. In both cases
the instantaneous sound pressure level without reflection is shown as dashed lines, the
difference is constant through time and has a marginal effect of around 4 and 5 dB.
This effect can be seen more clearly by analyzing the variation in instantaneous excess
attenuation at Fig.2(b). For both cases, the ground reflection has a slightly variation
of around 0.5 dB during simulated time of 3 s. Minimum excess attenuation occurs
when there is a maximum sound pressure level, at this point the source and receiver are
the closest and hence it has the smallest propagation path. At this instant, the ground
reflection has minimum impact on the sound pressure level.
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Figure 3: Instantaneous excess attenuation of a moving source with constant velocity
(a) v = 14 m · s−1 and (b) v = 30 m · s−1 for a range of porosities. Considering source
emitting a harmonic signal at f = 200 Hz.

Figure 3 shows the IEA to evaluate the sensitivity of the microstructural parameters to
the variation in speed. The porosity remains nearly constant in time for both cinematic
conditions. However, the increase in velocity increases the sensitivity of porosity with a
variation ranging 15 dBs.

Figure 4 shows the minimum instantaneous excess attenuation at a certain position in
time to the porosity variation with respect to the harmonic frequency the source emits.
A minimum IEA means the position where the ground reflection has less impact on
the SPL, in other words, the position where the ground has its highest absorption. The
three cinematic conditions for the source are stationarity, constant velocity and constant
acceleration. For the stationary case in Figure 4(a) the minimum IEA remains almost
constant with frequency. In the two moving cases, below f = 1 kHz, the minimum IEA
decreases with an increase in source emitting frequency but the porosity variation remains
constant. After this point both the minimum IEA and porosity shows high sensitivity to
the emitted frequency. Comparing the two moving source cases with the stationary case, it
indicates that the porosity can vary due to the moving source and this variability increases
for sources emitting higher frequencies.



102 103 104

source frequency [Hz]

3.0

3.5

4.0

4.5

5.0
m

in
IE

A
[d

B
]

(a)

102 103 104

source frequency [Hz]

−4

−2

0

2

4

m
in

IE
A

[d
B

]

(b)

102 103 104

source frequency [Hz]

−5.0

−2.5

0.0

2.5

5.0

m
in

IE
A

[d
B

]

(c)

Figure 4: Minimum instantaneous excess attenuation at the instant when the source is
crossing the receiver for different harmonic source frequency (third octave bands) and
different porosity: ( φ = 0.1), ( φ = 0.3), ( φ = 0.5), ( φ = 0.7) in three
scenarios (a) stationary, (b) constant velocity v = 14 m/s and (c) constant acceleration
a = 10 m/s2.

4. CONCLUSIONS

A formulation of the acoustic field resulting from a point source with arbitrary speed
and arbitrary trajectory moving above a frequency-dependent ground is presented. The
tool allows for different scenarios to be simulated, such as different geometries, paths,
cinematic conditions, source signal and ground models. In this paper we investigated the
effect of motion of a point source above ground considering Hamet impedance model. In
the example given, the monopole source is simulated in a pass-by noise scenario. We first
looked into the SPL and IEA for two cinematic conditions where the ground reflection
showed little variation due to the moving source. This effect can be noticed more clearly
when analyzing the IEA.

The second analysis concerned the influence of source speed into the ground porosity.
Two velocities are simulated, for the low speed case the Doppler effect in the ground
parameter exhibited slight variation of 5 dB. The effect of ground reflection increases
as the source speed increases and the porosity showed higher variability to the cinematic
conditions. This can be attributed to the increased effect of the Doppler effect. However,
the transient effect of porosity is negligible. In the third and final analysis, we compared
the minimum instantaneous excess attenuation at a certain position in time to the porosity
variation with respect to the harmonic frequency the source emits. Results indicate that
the sensitivity to porosity has a considerable variation due to the moving source and this
variability can increase for sources emitting higher frequencies.

The analytical model demonstrates its potential for virtual pass-by-noise simulation



which can be use to assess acoustic properties of a moving source above different grounds.
However, there are still challenges to be addressed such as the physical validity of the
model against an experiment and the lack of tire-road interaction taking into account road
models.
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