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ABSTRACT 
This paper evaluates the suitability of three parametric probability density functions 
for characterizing urban acoustic noise. For that purpose, the sound levels in 
one-third-octave bands (6.3 Hz-20 kHz) were measured every 0.5 seconds for 5 
minutes (for a total of 600 measurements) at 38 locations in Boston, USA. The 
probability density functions for this dataset were approximated using histograms 
and the log-normal, generalized gamma, and compound gamma distributions. 
Maximizing the log-likelihood for each distribution yielded their parameters. The 
suitability of each distribution was evaluated using the Kullback-Leibler divergence 
with the histogram approximation as the reference. Overall, the compound gamma 
distribution was the most accurate followed by the log-normal and then the 
generalized gamma distributions. Nonetheless, the simplicity of the two-parameter 
log-normal distribution might be preferred over the three-parameter compound 
gamma distribution in some applications. For the compound gamma distribution, 
the distributions of its parameters across all locations and frequencies were also 
approximated parametrically, which provided satisfactory agreement. 
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1. INTRODUCTION 
Noise characterization facilitates noise control by providing information about the 

sources (steady or intermittent) and transmission paths (strong or weak scattering). This 
paper characterizes urban acoustic noise measurements using parametric probability 
density functions (PDFs). Previous authors1,2 have measured urban acoustic noise but 
have not rigorously identified an appropriate PDF for their data. García and Faus1 note 
that at very noisy locations the distribution of the levels is nearly Gaussian, but at 
relatively quiet locations it strays from a Gaussian distribution and has greater skewness. 
Song and Lenchine2 also report some non-Gaussian distributions, but neither paper 
identifies an appropriate PDF. Ewart and Percival3 proposed using the generalized gamma 
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distribution to model ocean acoustic intensity measurements because it can represent 
exponential distributions exactly and can approximate log-normal distributions, which 
correspond to strong and weak scattering. A log-normal distribution of intensities is 
equivalent to a Gaussian distribution of intensity levels, which is what García and Faus 
observed at some of their measurement locations. 

While Ewart and Percival demonstrated that the generalized gamma distribution 
works well for modeling scattered, transmitted signals in the ocean, this distribution does 
not work as well for background, urban noise. For example, Figure 1 illustrates how the 
log-normal and generalized gamma distributions approximate García and Faus’s data at 
loud and quiet locations using the maximum log-likelihood parameter estimates. In 
addition, Table 1 gives the Kullback-Leibler (KL) divergence4 for both distributions. The 
KL divergence quantifies the difference between two PDFs, so smaller values indicate 
stronger similarity between PDFs. The original levels have been transformed to squared 
pressures and normalized by the mean squared pressure. Unfortunately, since the original 
data was A-weighted, these are not the actual squared pressures. Figure 1 and Table 1 
demonstrate that for these two cases the two-parameter log-normal distribution better 
represents the data than the three-parameter generalized gamma distribution. 

 
Figure 1. The approximate PDFs for García and Faus’s data1 with four parametric 

distributions. The compound gamma distribution characterizes the data the best. 

Table 1. The KL divergence for two cases in García and Faus’s data1 using four 
parametric distributions. With the smallest KL divergences, the compound gamma 

distribution performs the best in both cases. 
 KL Divergence 

Distribution Loud Site Quiet Site 

Log-Normal 0.0051 0.43 
Gamma 0.21 0.78 
Generalized Gamma 0.035 0.53 
Compound Gamma 0.0041 0.10 

 
Wilson et al.5 analyze several alternative distributions for modeling acoustic 

scattering and suggest that these distributions may be appropriate for modeling urban 
acoustic noise. In particular, they identify the compound gamma distribution6 as a 
theoretically attractive model because it is derived from a well-defined set of assumptions 
and allows Bayesian sequential updating. They derive the compound gamma distribution 
using a gamma distribution for the local model and allowing the gamma distribution’s 
rate parameter to vary according to a second gamma distribution across space, time, and 
frequency. Naively assuming that García and Faus’s data is a measurement of the local 



model (i.e. a gamma distribution) produces a poor approximation of the data, as Figure 1 
and Table 1 demonstrate. Instead, since the data is collected across several minutes of 
time, the data is actually considered a measurement of the global model (i.e. a compound 
gamma distribution) that has been averaged across only a short period of time and at one 
location and one frequency, that is a quasi-local model. In addition, Figure 1 and Table 1 
provide some practical motivation for choosing a compound gamma distribution by 
demonstrating that it approximates García and Faus’s data better than the other 
distributions. 

This paper assesses whether the log-normal, generalized gamma, and compound 
gamma distributions are appropriate models for urban acoustic noise based on a one-day 
measurement campaign in the North End of Boston, USA (Figure 2). It describes in detail 
three locations with low, medium, and high noise levels and gives summary statistics for 
the parameters of the compound gamma distribution. 

 
Figure 2. Measurement locations in the North End (Boston, USA). A 5-minute 

measurement was recorded at each blue flag. Image created using Google Earth Pro. 



2. PROCEDURE 
On June 7th, 2018, the sound level was measured at 38 locations in the North End 

(Figure 2) of Boston, USA. At this site, road traffic is the dominant sound source with 
additional contributions from construction sites, pedestrians, air conditioners, and Boston 
Logan International Airport. 

Each measurement consisted of a 5-minute stationary measurement using a 
Norsonic Sound Analyzer (Nor 140) where the microphone was 1.25±0.05 m from the 
ground (Figure 3). Using the fast response setting (125 ms time constant), the sound level 
meter recorded one measurement every 0.5 s at the 6.3 Hz to 20 kHz one-third-octave 
bands. Each measurement site was also documented with a picture, the time, its GPS 
coordinates, and a subjective assessment of the dominant sound sources (Table 2). 

 
Figure 3. Pictures of three measurement sites representing high, medium, and low 

sound level areas. The numbers give the corresponding GPS waypoints from Figure 2. 

Table 2. Documentation of three measurement sites. 

Site Time 
(EDT) 

Cross 
Streets 

GPS 
Coordinates 

Noise 
Level Description 

114 10:30 Cross St 
Hanover St 

42.362492, 
–71.055568 High 

Very busy street 
sirens (10:31); truck idling 
distant generator at 63 Hz 

127 13:30 Hanover St 
Clark St 

42.365222, 
–71.053003 Medium 

Semi-busy street 
road/engine noise 
pedestrian noise 

131 14:10 Hanover 
Ave 

42.365734, 
–71.052181 Low 

Quiet side street 
birds; air conditioner 
distant pedestrians 

  



3. RESULTS 

3.1 Site descriptions 
For simplicity, this paper focuses on 3 of the 38 locations, and Figure 4 gives their 

spectrograms. The first location (waypoint 114) had very high sound levels due to nearby 
road traffic and a nearby construction site (especially at 63 Hz). A police car with its 
sirens on (2 kHz) passed about one minute into the measurement. In addition, a large truck 
stopped near the measurement location while waiting at a red light (minutes 3-4). The 
second location (waypoint 127) had moderate sound levels from predominately road 
traffic and pedestrians. The spectrogram demonstrates the intermittent nature of the traffic 
noise. The third location (waypoint 131) had low sound levels primarily from an air 
conditioner (250-315 Hz) and birds (4-5 kHz). These three locations were chosen to give 
both an idea of what is typical of this neighborhood (medium) and the great variance 
within this neighborhood (high and low). 

 
Figure 4. Spectrograms of the sound level meter data at three locations, which 

represent high, medium, and low sound level areas. 

3.2 Probability Density Functions 
After performing the measurements, the next step was to approximate the PDFs. 

First, all of the data was transformed from an unweighted (Z-weighting) level 𝐿𝐿𝑖𝑖 to a 
normalized squared pressure 𝑝𝑝𝑛𝑛,𝑖𝑖

2 : 
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The proportionality constant in Equation (1) is in both the numerator and denominator of 
Equation (3), so it cancels out. The 𝑛𝑛 indicates that the pressure is normalized, and the 𝑖𝑖 
indicates that it is an individual pressure measurement. The pressure measurements vary 
across space, time, and frequency. For this dataset, the PDF is approximated at each 
location and frequency, averaging across time in Equation (2), using almost 600 pressure 
measurements within a 5-minute time window. 

Histograms and kernel density estimation are non-parametric methods to 
approximate PDFs. This project used histograms for their transparency, which had 18 
logarithmically-spaced bins from 0.01 to 10 (dimensionless squared pressure). The same 
bins can be used for all of the data because each 5-minute dataset has been normalized by 
its own mean. The top row of Figure 5 illustrates the PDFs at three locations as a function 
of the normalized squared pressure and frequency. These plots are made by creating a 
histogram for each one-third-octave frequency band, so each row may have a different 
normalization constant, 𝜇𝜇𝑝𝑝2. 

The histograms in Figure 5 demonstrate several characteristics of urban acoustic 
noise. First, each one-third-octave frequency band (i.e. each row) is very similar to its 
adjacent frequency bands (i.e. the rows above and below it). This result suggests that most 
of the urban sound sources are broadband sources. The most notable exception is in the 
high noise level plot (site 114) at 2 kHz because a police siren, which is not broadband, 
sounded during part of the measurement. Moreover, there is a single well-defined peak 
for each frequency, which creates a sideways U-shaped ridge in these plots. The bottom 
of the U is at the mid-range frequencies (about 250 Hz) with the tops at the low and high 
frequencies (12.5 Hz and 12.5 kHz). This shape indicates that middle frequencies have a 
much smaller probability density of having pressures much less than their mean, which 
creates a valley of probability density on the left side of each plot. Moreover, as the overall 
level decreases, the valley tends to grow. 

The highest plotted probability density occurs at waypoint 114 with the 
normalized squared pressure equal to 0.01 and the frequency equal to 16 kHz. In this case, 
rare high amplitude events push the mean far above the typical value (i.e. high skewness). 
The police siren at 2 kHz in plot 114 is a simple example. The siren’s presence is rare 
(only 20 seconds out of a 5 minute measurement), but it has such a high amplitude that it 
dramatically increases the mean at that frequency. 

PDFs can also be approximated using a parametric distribution. This paper 
evaluates three different distributions: the log-normal, generalized gamma, and 
compound gamma distributions: 
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where Γ is the gamma function, Β is the beta function, 𝑥𝑥 is the random variable, and the 
remaining letters are the distribution parameters, which can be determined by using the 
log-likelihood estimates. The second, third, and fourth rows of Figure 5 respectively 
illustrate the log-normal, generalized gamma, and compound gamma approximations at 



three different locations. The distribution parameters are calculated for each 
one-third-octave frequency band and location. 

 
Figure 5. The PDFs at three locations estimated using a histogram and three 

parametric distributions. The compound gamma distribution is the most accurate. 

The compound gamma distribution is qualitatively the best parametric 
representation of the histograms, but all three parametric distributions have some features 
that could be improved. All three systematically over predict the probability density of 
pressures in the valley; visually, the dark blue areas on the left side of the histograms are 
reduced in size in the parametric approximations. However, the compound gamma 
distribution reduces the size of the low probability density valley the least. In addition, 
each of the parametric distributions has some issues at the low sound level location 
(site 131) at the high frequencies, specifically, above 8 kHz for the log-normal and 
generalized gamma distributions and at 3-8 kHz for the compound gamma distribution. 

For more detail about the actual values, Figure 6 plots the PDFs at two frequencies 
(250 Hz and 1 kHz) and three locations using four different approximations. Using the 
histograms as a reference, the compound gamma distribution is the most similar. All of 
the parametric distributions tend to underestimate the height of the peak and overestimate 



the width of the peak, but the compound gamma has the smallest error. In addition, the 
log-normal and generalized gamma distributions tend to underestimate the location of the 
peak; whereas, the compound gamma distribution correctly identifies the peak location. 

 
Figure 6. The PDFs at three locations and two frequencies estimated using a histogram 
and three parametric distributions. The compound gamma distribution is most accurate. 

Qualitatively, the compound gamma distribution yields the most accurate 
parametric approximation. To make these comparisons quantitative and to include all the 
measurements, Table 3 evaluates the KL divergence across all of the locations and 
frequencies. Table 3 confirms that the compound gamma distribution approximates urban 
acoustic noise the best followed by the log-normal and then the generalized gamma 
distributions. Since the two-parameter log-normal distribution is simpler than the 
three-parameter compound gamma, the log-normal distribution may be preferred in some 
applications. However, the three-parameter generalized gamma is more complicated and 
less accurate than the log-normal distribution. A different parametric PDF may perform 
better than any of these distributions. Also, additional data (i.e. more than 600 data points 
for each distribution) could also help by improving the accuracy of the histogram 
estimates. The samples could be taken more frequently (>2 Hz) and over a longer time 
duration (>5 minutes)7. In addition, both the visual and KL divergence comparisons are 
affected by the accuracy of the maximum log-likelihood estimates. 

Table 3. KL divergence percentiles across all locations and frequencies for three 
distributions using the histograms as the reference. 

 Percentile 

Distribution 1% 10% 25% 50% 75% 90% 99% 

Log-Normal 0.0080 0.025 0.051 0.11 0.20 0.35 0.65 
Generalized Gamma 0.012 0.039 0.076 0.15 0.27 0.44 0.73 
Compound Gamma 0.0038 0.011 0.021 0.043 0.091 0.18 0.40 



3.3 Hyperparameters 
Calculating the compound gamma distribution parameters (𝑎𝑎, 𝑏𝑏, 𝑞𝑞) at all 

38 locations and 36 frequencies enables an analysis of the distribution of those 
parameters. The parameters (𝜇𝜇,𝜎𝜎) that characterize the distributions of those parameters 
(𝑎𝑎, 𝑏𝑏, 𝑞𝑞) are called hyperparameters (i.e. the parameters of different parameters). Figure 
7 illustrates two different approximations of the underlying PDF: a histogram with 10 
logarithmically-spaced bins and a log-normal distribution. Table 4 gives the 
hyperparameters for each of the log-normal distributions where each of the compound 
gamma parameters have been scaled by its sample mean. Table 4 also provides the KL 
divergence for each distribution. Overall, the log-normal distribution appears to be a good 
fit for the compound gamma distribution parameters. The biggest deviation is at very 
small values of 𝑞𝑞. 

 
Figure 7. The PDFs of the compound gamma distribution parameters. The log-normal 

distribution provides a satisfactory approximation of the histograms. 

Table 4. Hyperparameters and KL divergence for each compound gamma parameter. 

Compound Gamma 
Parameter 

Log-Normal Hyperparameter 

KL Divergence 𝜇𝜇 𝜎𝜎 

𝑎𝑎 –0.85 1.3   0.013 

𝑏𝑏 –0.26 0.64 0.013 

𝑞𝑞 –1.8   1.8   0.045 
  



4. CONCLUSION 
An experimental campaign was conducted in Boston, USA to sample urban 

acoustic noise so that it could be characterized using parametric PDFs. This research 
provides insight into how well the log-normal, generalized gamma, and compound 
gamma distributions approximate urban acoustic noise. Evaluating them using KL 
divergence, the compound gamma distribution performs the best followed by the 
log-normal and generalized gamma distributions. All of them show some systematic 
errors (e.g. underestimating the peak height and overestimating the peak width), so 
another PDF might perform better. 
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