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ABSTRACT 

Voice Alarm systems (VA) in underground railway spaces are life critical 

communication systems used to instruct occupants in case of emergency or direct 

them to safety. The effectiveness of these systems depends on the performance 

quality of the entire electro-acoustic communication chain, which speech 

intelligibility is the main parameter. VA are designed with the assistance of field 

measurements and prediction computer models. Relevant standards and industry 

best practice require the design and performance assessment of VA systems in 

unoccupied spaces. This is the most practical state to undertake acoustic 

measurement and is generally considered acoustically the worst-case scenario. 

However, the influence of occupancy on the performance of the VA remains 

unknown to the designer. This paper investigates the impact that occupancy can 

have on the acoustic performance of an underground platform VA. The sound 

absorption coefficients of varying densities of standing people were determined 

and implemented in acoustic modelling software to predict the performance of a 

hypothetical VA on a real underground station platform. The results showed that 

for a representative level of ambient noise, speech intelligibility increased notably 

with occupancy density. 
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1. INTRODUCTION 

 Voice alarm (VA) systems are utilised in underground platforms of rail stations to 

provide critical verbal instructions to occupants in case of emergency. The acoustic 

performance of the systems is usually designed with the aid of acoustic modelling 

software which predict performance parameters as a function of input data. Since VA 

are life critical systems during emergencies, the acoustic models should be as accurate 

as possible.  

 The occupants on a platform have the potential to drastically alter the acoustics of the 

space. A small degree of sound absorption is provided by the clothes worn by a single 

person [1], but if the platform is occupied at various degrees, different levels of sound 

absorption are to be expected in the space under consideration 

 A large amount of research has been conducted looking into the effect of seated 

audiences on the acoustics of indoor spaces (particularly in auditoria) [2,3,4,5,6 & 7] 

but limited research, has been conducted to date on the effect of standing audiences as 

would be expected in an underground platform. There are a number of sources which 

have determined the absorption coefficients of standing people [1,8&9] but the 

implementation in acoustic modelling software remains very little explored. The effect 

of standing audience and occupancy density on the acoustic performance of VA systems 

has not been explored. 

 This study aims to investigate the effect of passenger occupancy on the acoustic 

performance of VA systems in underground stations to conduct the study, a hypothetical 

VA system will be modelled using computer simulation techniques and the effect of 

occupancy absorption on two performance parameters will be predicted under various 

occupancy densities.  

 

2.  BACKGROUND THEORY 

 

This section will cover the general principles of acoustic design of VA systems in 

underground stations and the background behind the implementation of occupancy 

density. 

 

2.1 Acoustic Design of VA Systems 

The main electroacoustic parameter indicating performance quality for a typical VA 

system are: speech intelligibility (quantified in terms of Speech Transmission Index, 

STI), signal level (measured as the A-weighted sound pressure level SPL(A)) and 

signal-to-noise ratio (SNR). The speech intelligibility of a communication system, 

either electro acoustic or human, is the proportion of words understood by the listener 

and STI is the objective scale standardised in [10]. The STI method estimates the loss of 

modulation depth in a known signal played through a system.  

In a platform VA system, a large cause of the loss of this modulation depth can come 

from the acoustics of the space in which the system is located, assuming that the 

electro-acoustic aspects of the system are distortion free [11].  

Long reverberation times and high ambient noise in the space tend to mask some, or 

all, of the modulations in the test signal and these effects are often combatted with the 

introduction of acoustic treatment (sound absorption).  

When designing a VA system, it often is required to meet a number of National, 

International and, Client Standards.  

Minimum performance requirement in the UK from different guidance sources are 



 

summarised in Table 1 below. The requirements are typically targeted with the space in 

an unoccupied state as the industry assumption is that, this will be a ‘worst-case’ 

condition for the performance of the VA. In typical platforms this condition is caused 

by the lack of absorption allowing long reverberation in the space. An uncontrolled 

reverberation is one of the main degrading factors affecting the speech intelligibility 

from platforms VA [11]. This reference extreme condition allows for easy comparison 

of performance measurements of the system, which can normally only be conducted 

after the station is closed to the public, and the empty state has been assumed to be the 

‘worst-case’ in terms of STI performance. However, this situation is not representative 

and during busy periods the levels of occupancy can become very high. Figure 1 below 

shows two images of a London Underground platform under different occupancies. 

 Occupancy noise level can be defined as the ambient noise level in dB measured on a 

platform with occupancy. The occupancy noise level is another fundamental factor in 

the degradation of the speech intelligibility and therefore the STI. 

 

Table 1 – Acoustic requirements of VA systems 

 

Source 
Acoustic Requirement of VA System 

STI SPL(A) SNR 

ISO 7240-19:2007 
Average 0.50 

Min 0.45 
>65 dB >10 dB 

BS 50849:2017 
Average 0.50 

Min 0.45 
N/A >10 dB 

BS 5839-8:2011 0.50 N/A >10 dB 

NR/L2/TEL/30134 Average 0.50 >65 dB >10 dB 

 

 
Figure 1 – Low occupancy (L) and High Occupancy (R) in Underground Platforms 

 

2.2 The Effect of Occupancy Density 

The absorption coefficient of standing audiences has been the subject to some 

research [9,12] and the effect on the acoustics of varying densities of standing audiences 

in churches has been predicted [13].  

Martellotta et al. [12], has conducted research into how the absorption coefficient of 

a standing audience can vary with the occupancy density. The research showed that 



 

there is a general decrease in the equivalent absorption area per person at high 

frequencies as the occupancy density increases.  

Martellotta et al. presented the equations in Table 2 to predict the absorption 

coefficients of varying occupancy densities based on the area of the floor the audience 

occupied. 

 

Table 2 – Equations to predict the octave band absorption coefficients at varying 

occupancy densities, from [12] 

Frequency Equation 

125 Hz α = 0.142d 

250 Hz α = 0.239d 

500 Hz α = 0.532d + 0.05 

1,000 Hz α = 0.709d + 0.28 

2,000 Hz α = 0.738d + 0.27 

4,000 Hz α = 0.756d + 0.25 

Where: 

d = occupancy density, people per metre square (p/m2) 

α = absorption coefficient 

 

The above equations are based on absorption coefficient measurements of varying 

occupancy densities in a reverberation chamber. The equivalent absorption areas per 

person have been calculated by dividing the calculated absorption coefficient by the 

occupancy density (in terms of the number of people per metre square (p/m2)). The 

resulting equivalent absorption areas per person are presented in Figure 2 below. Data at 

8 kHz has extrapolated based on 2 kHz and 4 kHz values. 

Figure 2 - Calculated absorption area per person at varying occupancy densities 
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  As can be expected from the formulas in Table 2, there is no difference in the 

equivalent absorption area per person at 125 Hz and 250 Hz, and a slight decrease in 

absorption with increased occupancy at 500 Hz. The largest differences occur at 1, 2, 

and 4 kHz, where the total absorption decreases significantly at high occupancy density. 

This is due to the lower availability of exposed absorption area at high occupancy 

densities. When the density is increased the occupants are closer together and shield the 

adjacent person from the sound source, and therefore, stop absorption that could occur. 

This effect doesn’t occur at low frequencies as the wavelength is longer than the width 

or depth of a standing person and the waves diffract round. 

3.  RESEARCH METHODOLOGY 

 

This section sets out the method for predicting the acoustic performance of the 

hypothetical VA system and the assumptions made within the model 

 

3.1 Acoustic Modelling 

 

 Acoustic models are used to predict the likely performance of VA systems in 

underground platforms [11&14]. For the purposes of this investigation CATT-Acoustics 

(v.9.1) [15] computer simulation programme has been employed to create prediction 

models. A model of a hypothetical space has been developed to assess the impact of 

occupancy density. The space is based on a typical London Underground deep platform 

and comprises of a single approximately 150m long, 6m wide and 5m high platform 

with short column loudspeakers distributed evenly down the entire length.  

 A cross-section and a 3D projection of the platform showing the loudspeaker 

locations (red) and the receiver locations (blue) are shown in Figure 1. 

 

 
Figure 1 – Cross-section and 3D projection of the platform 

 

 Column loudspeakers are mounted at a height of 2.8m from the platform floor and 

have been assigned the directivity characteristics of Penton MCS20/TEN tapped at their 

maximum tapping of 20W. 26 loudspeakers have been used and are spaced at 5.8m 

intervals down the length of the platform. They are aimed with an elevation angle of 30 

degrees to approximately focus on the audience average ear height (1.6m).  

 Acoustic panels were included in the model to represent a platform with acoustic 

treatment intended to increase the STI to a compliant state under the worst case (empty) 

scenario. Acoustic absorption is increasingly included in London Underground Stations 

as compliance with the Standards given in Table 1 is being sought for new stations 

(such as the new Crossrail Station) and stations undergoing refurbishment.  



 

 A total of 15 simulated receivers have been placed in the model at a height of 1.6m 

above the floor (in accordance with BS EN 50849:2017 [16]). All receivers are located 

along the platform length on a line located at half platform width. Simulated receivers 

are placed at a distance of 10m apart so that they cover areas of on axis and off axis 

projection from the loudspeakers. 

 

3.3 Surface Finishes 

 

 Surface finishes have been implemented based on the materials found in a deep 

London Underground platform and common materials found on underground rail 

stations. With the exception of the acoustic treatment panels, surface materials are all 

largely acoustically reflective. The materials and their absorption coefficients used 

within the model are presented in Table 3 below. Absorption coefficients data for 8 kHz 

is normally not available in the literature and so, for the purposes of this study, 8kHz 

data has been obtained by using the extrapolation function within CATT-Acoustic as 

explained in the software manual [15]. 

 

Table 3 – Absorption Coefficients Used in Acoustic model 

Finish Location 
Absorption Coefficient at Octave Band Centre Frequency (Hz) 

125 250 500 1k 2k 4k 8k 

Concrete 
Floor, track 

bed, end walls 
0.01 0.02 0.02 0.02 0.02 0.02 0.08* 

Absorption Wall panels 0.45 0.90 0.95 1.00 0.95 0.90 0.75* 

Glazed tile Walls 0.01 0.01 0.01 0.01 0.02 0.02 0.02* 

All absorption coefficients are from [17] 

Values higher than 0.99 were limited to 0.99. 

*Extrapolated by CATT-Acoustic software 

 

3.4 Occupancy Density and Implementation 

 Three densities have been used to predict the effect of increased occupancy based on 

available guidance from BS 9999:2017 [18] and London Underground Limited [19]. 

Table 9 of BS 9999:2017 [18] gives guidance on the design of buildings to assist in the 

evacuation of users of the building in the event of an emergency. Part of the design 

process requires and understanding of the occupancy levels anticipated during an 

emergency evacuation. Different design solutions will be required for different levels of 

occupancy, and so the Standard gives examples of typical occupancy densities. Table 4 

is replicated from BS 9999:2017. 

 

Table 4 – Occupancy Density from [18] 

Density 
Floor space factor 

(m2per person) 
Example 

Occupancy 

density (p/m2) 

Very high 0.3 People queueing 3.3 

High 0.5 Bar 2.0 

Normal 1.0 
Theatre or cinema 

foyer 
1.0 

Low 2.0 Museum or gallery 0.5 

 



 

 Based on this guidance, the three densities to be modelled represent, empty, normal, 

and very high occupancy; 0.0 p/m2, 1.0 p/m2, and 3.3 p/m2, respectively.  

 This ties in with the London Underground guidance, LUL-S1371 [19], which has 

station planning requirements on platforms based on Fruin Levels of Service (LoS) [20] 

as follows: 

 

Table 5 – LUL-S1371 Station Planning Requirements [19] 

Category of station operation LoS Floor space factor 
Occupancy 

density (p/m2) 

Normal operation C 0.93 m2 per person 1.1 

Guidance for special events up to 3 

days 
D 0.28 m2 per person 3.5 

 

 The standing audience has been implemented in the acoustic model as a single box 

based on the relative dimensions of a standing audience presented by Martellotta et al. 

[12]. The box was modelled at a height of 1.45m above the floor level with a gap of 

0.5m to the edge of the platform edge and the side/end walls on the basis that 

passengers are not likely to stand this close to the platform edge, or walls. 

 

3.5 Calculation of Absorption Coefficients  

 An absorption coefficient has been applied to the top and three sides of the audience 

box based on the calculated equivalent absorption area per person with the densities 

given above.  

 The calculated equivalent absorption areas per person are presented in Table 6 

below. 

 

Table 6 – Equivalent Absorption Area per Person Used in the Acoustic Models 
Occupancy 

density 

(p/m2) 

Calculated equivalent absorption area applied to audience 

125 Hz 250 Hz 500 Hz 1,000 Hz 2,000 Hz 4,000 Hz 8,000 Hz 

0.0 N/A N/A N/A N/A N/A N/A N/A 

1.0 0.14 0.24 0.58 0.99 1.01 1.01 N/A 

3.3 0.14 0.24 0.55 0.79 0.82 0.83 N/A 

 

 The above equivalent absorption areas per person have been multiplied by the total 

number of people expected on the platform (based on the occupancy density and the 

area of the platform (443m2)). The total equivalent area was subsequently divided by the 

surface area of the box representing the audience to derive the absorption coefficient to 

implement in the model, based on: 

Equation 1 – Derivation of Absorption  

𝛼 =
𝐴

𝑆
 

Where: 

A = equivalent absorption area (m2) 

 𝛼 = absorption coefficient 

S = Surface area of the box  

 



 

 The resultant absorption coefficients for the two occupancy densities are presented in 

Table 7 below. The empty scenario did not have the representative audience box 

included in the model. 
Table 7 – Audience Absorption Coefficients Used in Acoustic Models 

Occupancy 

Density 

(p/m2) 

No. 

people 

Absorption Coefficients Applied Within Acoustic Model 

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz 

1.0 443 0.08 0.14 0.34 0.58 0.59 0.59 0.59* 

3.3 1461 0.27 0.46 1.05 1.52 1.57 1.60 0.75* 

Where absorption coefficients exceed 1.0 the coefficient was capped at 0.99 

*Data extrapolated by CATT-Acoustics 

 

 Scattering coefficients have been applied based on the formula set out in Equation 2, 

which has been taken from the computer modelling software CATT-Acoustic Manual 

[15].  

 

Equation 2 – Scattering Coefficient Prediction 

𝑠 = 50√
𝑑

𝜆
 

 

Where: 

s = Scattering coefficient; d = estimated depth of material (m); 𝜆 = wavelength of sound (m)  

 

 

 Table 8 shows the scattering coefficients used in the acoustic models. 

 The modelling has been conducted in all models with a representative temperature 

and relative humidity set to 20° and 50%, respectively, as the temperature and humidity 

can contribute to the acoustic performance of a VA system [21]. 

 

Table 8 – Scattering Coefficients used in Acoustic Models 

Material 

type 

Scattering Coefficient Applied at Octave Band Centre Frequency (Hz) 

125 250 500 1000 2000 4000 8000 

Wall/floor 3 4 6 9 12 17 24 

Audience 37 52 74 105 148 210 296 

Values lower than 10 were replaced with 10, and values higher than 90 were capped at 90 as 

recommended in the CATT-Acoustic manual [20] 

 

3.6 Occupancy Noise Level  

  

A field survey was undertaken to measure representative occupancy noise level at a 

representative London Underground platform during peak rush hour. Six measurement 

samples of 5 minutes each (LAeq,5min) were measured with a calibrated class 1 sound 

level meter while the occupants were waiting for the train. The measurements were 

logarithmically averaged, and results are presented in Table 9. These values were then 

applied to the acoustic models as input key information for the prediction of the STI.
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Table 9 – Occupancy Noise Level Applied in Acoustic Models 

Measured Occupancy Noise Level (dB) at Octave Band Centre Frequency 
  dB(A) 

125 Hz 250 Hz 500 Hz 1,000 Hz 2,000 Hz 4,000 Hz 8,000 

67 64 62 58 55 51 47 64 

 

4.  MODELLING RESULTS 

 

 The platform VA system performance has been predicted in terms of the total SPL 

and STI at each of the 15 receiver locations. The model has been calculated with all the 

loudspeakers operational, and the results from the receivers have been arithmetically, 

mean averaged to provide a spatial average VA system performance.  

 The resulting total SPL is presented in Figure 2 and the STI performance is presented 

in Figure 3. Figures 2 and 3 show the mean value and Figure 3 shows the corresponding 

range of values as errors bars  

 

Figure 2 – Predicted SPL Under Varying Occupancy Densities 

 

Figure 3 – Predicted change in STI due to Increased Occupancy Density 
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 The octave band SPL results for two receivers are presented in Figures 4 and 5 below 

which indicate the performance for locations directly on-axis and directly off-axis. 

 

Figure 4 – Octave Band SPL – Off axis 

 

Figure 5 – Octave Band SPL – On-axis 

 

5. DISCUSSION 

 The results show that there is a significant improvement on the STI performance of a 

VA system when a standing is audience is introduced to an underground platform, the 

increase was more pronounced (by approximately 0.2 STI) when the occupancy density 

is increased (Figure 3). This compounds the current industry assumption that the STI of 

a system is at its lowest in an unoccupied space and therefore, is a worst-case 

assessment. However, in order to comply with the current criteria given in Table 1, 

acoustic absorption is being installed at many underground stations. Which, under high 

occupancy, could be unnecessary. Although, should the platform have very few people 

(i.e. less than 10), the VA system would still need to be intelligible at all locations, and 

the absorption provided by the occupants would likely not be sufficient to create a 

compliant VA system. 
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 The total signal SPL was reduced by approximately 1 dB(A) when the platform was 

partially occupied and by approximately 2 dB(A) when the platform was fully occupied 

(Figure 2). This has a major implication on the overall design of a VA system, since the 

total SPL is lower with occupancy, the amplification power may need to be increased to 

compensate for the loss in signal level and maintain the specified signal at the specified 

SPL level.  

In a distributed VA system, the total signal SPL at the audience plane is typically 

increased by increasing the power tappings of loudspeakers. In this case the total power 

would need to be doubled to give a 3 dB increase in SPL to compensate for the effect of 

loss of signal SPL due to a full occupancy. This would require a doubling of 

amplification power, which would incur additional costs and could require additional 

space and cooling, which is limited in underground stations.  

 

 The SPL on axis (Figure 5) shows that there is little variation on-axis of a 

loudspeaker with increase density, this is largely due to the fact that the receiver on-axis 

will be in the direct field of the loudspeaker and the level received would have less 

contribution from reverberant sound affected by occupancy absorption.  

There is some variation in the off-axis SPL response with a significant reduction in the 

level at 1 kHz for both 1.0 p/m2 and 3.3 p/m2 of approximately 8 dB (Figure 4). At 

frequencies higher than 1 kHz, the SPL was consistently 3 and 4 dB lower than the 

empty scenario at 1 p/m2 and 3.3 p/m2, respectively. This, and the lower overall SPL, 

could have knock on impacts in the design of the system as the 1, 2 and 4 kHz bands 

hold some key information which can be crucial in the intelligibility of speech. 

 

5.  CONCLUSIONS  

 

 There is no information in the literature considering the effect of standing audience 

and occupancy density on the acoustic performance of VA systems. 

The effect of occupancy density has been shown to have a positive impact on the speech 

intelligibility performance parameter of a VA system in an underground platform. 

However, the Total signal SPL(A) was reduced by approximately 2 dB(A) with full 

occupancy, which could have an impact on the required amplification to recover the 

signal SPL to the specified level  

 It was found that a maximum difference of 8 dB could be experienced by receivers 

situated off axis from loudspeakers for different levels of occupancy at frequencies 

critical for intelligibility frequency. The effect was not observed for receivers on axis. 

 The STI has been predicted in all scenarios with the same background noise level It 

is likely that the background noise will vary with increased occupancy density, so a 

forthcoming study will investigate the impact of increased noise from higher occupancy 

densities.  

 In addition, modelling a low occupancy density with a single block over the audience 

area may not be appropriate. There will be a significant reduction in the volume of the 

space when modelling as a single block which would not be present with a low 

occupancy density. A new way of modelling low densities of standing audiences will 

also be investigated.  
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