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ABSTRACT 

This work proposes a new high-performance numerical simulation method of the 

three-dimensional acoustic field of a tonal component on blade passing frequency 

and its higher and combined harmonics produced by fans in computer devices, air 

conditioning systems and in aircraft and spaceship cabins. This method is based on 

the direct solution by a finite volume method of a Fourier-transformed convective 

wave equation that describes the propagation of sound in adiabatic and 

thermodynamically uniform irrotational stationary flow with respect to pressure 

perturbations in the form of a Fourier transformation. Boundary conditions are 

defined on sound absorbing boundaries in the complex impedance form, considering 

both the active and reactive component of the boundary impedance. Noise reduction 

is achieved by spatial redistribution of the tonal sound, which ensures its essential 

reduction in areas where people are located. The most effective approach is use of 

multi-layered sound-absorbing cellular structures (SAS), which can be installed on 

the inner surfaces of noise sources, and on the walls, ceilings and partitions of 

buildings. Optimal parameters of SAS and their location can be determined by 

multi-parametric computations of spatial sound fields for each tonal component of 

interest using the developed method. 
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1. INTRODUCTION 

Generation of hydrodynamic noise in the flow section of centrifugal fans occurs  
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due to various non-stationary hydrodynamic phenomena which can be conditionally 

subdivided into the following two types: 

1) those occurring due to hydrodynamic interaction between the flow leaving the 

impeller and the fan casing; 

2) vortex phenomena; 

The first type of non-stationary processes is a natural characteristic of centrifugal 

fans and of all bladed machines: it is due to stepwise non-uniformity of the flow at the 

impeller outlet. The non-stationary hydrodynamic interaction between the non-uniform 

flow (rotating together with the impeller) and the fan case causes vibrations at frequencies 

that are multiples of the impeller rotation speed. 

The second type is non-stationary flow caused by the vortex nature of the fluid 

flow, which is expressed as small-scale turbulence in the boundary layer, formation of 

turbulent wakes during streamlining of housing elements, and generation of large-scale 

vortex structures and separation flows. 

Study of the vibroacoustic characteristics of radial fans has shown that the 

intensity of vibration from hydrodynamic sources is proportional to the 4-6th degree of 

rotor rotation speed. 

Small-scale vortices generate turbulent noise, which produces a low-intensity 

broadband component in pressure and vibration pulsation spectra. 

Large-scale vortex structures generate high-amplitude weakly correlated 

pressure pulsations, expressed as an increase of the broadband component of the spectrum 

in low and medium frequency ranges.  

Studies of centrifugal fans indicate that, as a rule, maximum amplitudes in the 

spectra of pressure and vibration pulsations in design conditions have discrete 

components at the frequencies of the impeller blades (BPF).  

Studies of the flow in centrifugal fans with various blade geometries have been 

described in the papers [1,2]. Detailed studies of flow parameters in centrifugal 

compressors [3,4] and the flow in absolute and relative motion at the centrifugal pump 

impeller outlet [5] studies of flow in rectangular channels [6,7] which confirm that flow 

in the blade channel and at the outlet of the centrifugal impeller can be subdivided into 

two areas – a high-energy jet-flow and a low-energy wake-flow. This type of flow pattern 

entails substantial non-uniformity of relative and absolute velocities and angles of the 

flow across the impeller cascade spacing, since the low-energy area adjoins the trailing 

side of the blade. The distribution of static pressure across the blade cascade spacing at 

the impeller outlet, is close to uniform, so the difference in total fluid energy is primarily 

related to the fact that the velocities and angles of the flow are higher at the front side of 

the blade. Due to the non-uniform flow discussed above, the passing of the impeller 

blades entails periodic change in pressure in the casing correlated with frequency of the 

passing blade. Particularly drastic changes of flow parameters occur near the leading 

edges of the guide blades and at the volute tongue [8], which explains the attention paid 

to selection of an optimal gap between the impeller and casing. The present paper 

addresses numerical investigation of the noise generated by a centrifugal fan unit and 

offers some results of the study. The fan unit is used to pump air from the living module 

through absorbing cartridges connected to outlets of the unit. The fan unit is installed on 

a partition. It entrains air from the living zone of the command module, pumps it through 

the absorbing cartridges and discharges it into the instrument area. The operating mode 

of the unit is continuous (only one fan operates, and the outlet of the second fan is closed 

with a flap). 

 

 



 

2.  METHOD  

 

2.1 Governing Equations 

The model describing an isoentropic non-viscous flow is based on a concept 

suggested by Crow. S. [9] and Artamonov K. I. [10]. This model is used as an example 

to analyze the method of acoustic-vortex decomposition and the source of acoustic 

radiation. The equations that are normally used in aeroacoustic computation models were 

derived using the terms of hydrodynamic flow and, as mentioned in papers by 

Fedorchenko A. T. [11], Doak P.[12] and Goldstein M. [13], cannot be treated as purely 

acoustic. The right-hand sides of these equations, or the source terms, describe the 

generation of disturbances of flow parameters without distinguishing the acoustic 

component, and the left-hand sides describe the spatial-temporal propagation of wave-

type acoustic and vortex disturbances taking into account the convective transfer and 

spatial non-uniformity of sound velocity.  

Boundary conditions of the impedance type are recorded in terms of disturbances 

of the flow parameters compared with their average value. The original aeroacoustic 

equations are linearized with respect to their disturbed values. Such linearization enables 

Fourier transformation of the obtained equations and impedance boundary conditions and 

formulation of the respective boundary problem. Papers [14,15,16] contain validation and 

demonstrative examples of an efficient numerical solution of a boundary problem 

formulated using the proposed method for the modified Crow-Artamonov model using 

the finite volume method on a Cartesian grid adapted to the computational space 

boundary.  

Definitions 

Angular brackets  imply than the time average of the formula inside the 

brackets is used. A stroke implies its oscillatory component with respect to the average 

value. 

We express enthalpy as a sum h h h= + , where enthalpy is 
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 =  , where p p p = −  are pressure pulsations with 

respect to its time-averaged value.  

The adiabatic sound velocity is used, determined using time-averaged 

parameters of the medium: ( , )c c p S= . 

The Fourier transformation ( )  from the time function ( )f t  is as follows:  
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where 0   is frequency. 

2.2 Modified Crow-Artamonov model (isoentropic non-viscous flow) 

Decomposition of the velocity field and derivation of the wave equation with respect 

to enthalpy 

We express velocity v  as the sum of main flow velocity u  and velocity of 



acoustic   motion.  

 = +v u   (1) 

We express the law of conservation of momentum and mass as follows: 
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where   is the kinematic viscosity coefficient. 

For an adiabatic flow a small disturbance of pressure and density is associated 

with the disturbance of enthalpy, as follows: 
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We express Equation (3) in a non-divergence form: 

 
1

0
D

Dt




+ =v   (5) 

Hence, taking account of Equation (4), we obtain an equation in respect of 

enthalpy: 
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Now let us suppose that the acoustic component of velocity is much less than the 

main flow velocity: 
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Then from Equation (2) we derive: 
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Neglecting in Equation (9) and Equation (10) the viscous terms and squared 

velocity of acoustic motion

2


, as well as the effects of interaction between the acoustic 

and vortex modes (the last term in Equation (9)), we obtain: 
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Inserting Equation into Equation (5), we obtain: 
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Or, taking account of the adopted linearization pattern 
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Applying a gradient operator to Equation (13), we obtain: 
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Applying operator 
d

dt
 to Equation (15) and, neglecting the difference 
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Source function and Fourier transformation 

Inserting enthalpy into Equation (18) in the form of h h h= + , we obtain the 

following equation: 
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with a source term 
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Taking into account Equation (7) allowing substitution of the vortex mode 

velocity by full velocity in Equation (20), applying the Fourier transformation ( )  to 

Equation (19) and Equation (20), and changing over to tensor form, we express Equation 

(19) as: 

 

2

2 2

1
v v ( )( )i j

i j i

h
i i h f

с x x x
  

     
+ + − =       

 (21) 

 
v v

( )( ) ( ) i k

k i

f
x x

 
  

 =   
  

  (22) 

Boundary conditions 

A projection of the linearized and Fourier transformed equation of the impulse 

to wall normal, obtained on the assumption that the value of the normal Mach number is 

small, is as follows: 
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where v n
  is the component of pulsating velocity normal with respect to the wall. 

We express the Fourier transformed Meyers condition [17] on the outer surface 

of the SAS: 
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Complex impedance Z  is a function of   ,the Mach number, pulsation 

amplitude and characteristics of the boundary layer. 

The Sommerfeld radiation condition under non-reflecting boundary conditions 

is recorded taking into account the curvature correction of the wave front [18], 

proportional to the Laplacian operator in a tangent line to the plane surface. 

Taking this into account, the boundary, or edge conditions are expressed as 

follows. 
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Non-reflecting condition at the outer boundary: 
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Unsteady Flow Solution  

The following equations [19] are solved when modelling air motion: 

Continuity equations and impulse equations for modelling of fluid and gas motion: 
𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝑽) = 0 (28) 

𝜕𝜌 ∙ 𝑽

𝜕𝑡
+ ∇(𝜌 ∙ 𝑽 × 𝑽) = −∇𝑝 + ∇((𝜇 + 𝜇𝑡) ∙ (∇𝑉 + (∇𝑉)𝜏)) + 𝜌 ∙ 𝑔 (29) 

KEFV turbulence model equations are used. 

Turbulent viscosity is calculated on the basis of the following correlation: 
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Equation for turbulent energy k: 
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Equation for the turbulent energy dissipation rate ε: 
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Coefficients: 

𝜎𝑘 = 1; 𝜎𝜀 = 1.3; 𝐶𝜇 = 0.09; 𝐶𝑒1 = 1.44; 𝐶𝑒2 = 1.92 
(33) 



Standard wall functions at the wall boundary are used. 

 

2.3 Computational Domain and Grid  

A computational grid divides the computational space into cells in a rectangular 

parallelepiped, which circumscribes the computational space.  

Adaptation is local refinement of the initial computational grid. Subdivision of the 

grid cell is performed by means of bisection of each hexagonal cell edge in such a way as 

to obtain eight equal parallelepipeds of the cell of the next level of density. The cells of 

the initial computational grid are considered as zero level cells, the result of their single 

subdivision as first level cells, etc. 

The initial computational grid (subdivision of the computational space into cells 

in a rectangular parallelepiped), which circumscribes this computational space, is selected 

as uniform along all coordinate axes and cubical (with a 15 mm side). Dispersion 

(adaptation) of the computational grid is carried out in volume - within the entire sliding 

subarea - and along the walls of the housing and rotor (ref. Fig. 1 - 2). The computational 

grid was selected when studying the mesh convergence. 

 

 
Figure 1. Computational grid for determination of fan characteristics 

 

 
Figure 2. Computational grid for determination of acoustic field 



 

3. RESULTS  

 

3.1 Velocity field 

The flow pattern is represented by velocity vectors (Fig. 3 - 4) and streamlines 

(Fig.3) in the specified planes.  

 
Figure 3. Velocity vectors, m/s, in the transverse plane of the fan unit. Shown at 

a pressure of 300 Pa at the outlet, fan 1 is in operation 

 

 
Figure 4. Velocity vectors, m/s, in the longitudinal meridional plane of the 

operating fan. Shown at a pressure of 300 Pa at the outlet, fan 1 is in operation 

 



 
Figure 5. Streamlines (colors indicate velocity level, m/s). Shown at a pressure 

of 300 Pa at the outlet, fan 1 is in operation 

 

3.2 Pressure Field 

 

Static pressure distribution in the transverse plane is presented in Fig. 6. 

 
Figure 6. Static pressure, Pa, in the transverse plane of the fan unit. Shown at a 

pressure of 300 Pa at the outlet, fan 1 is in operation 

 

The obtained data indicate a significant non-uniformity of pressure and velocity 

distribution in the centrifugal impeller channels by steps of the blade cascade, suggesting 

dominance of tonal BPF sound generation.  

 

4.  CONCLUSIONS 

 

The paper offers a formulation and justification of the boundary problem of 

centrifugal fan aeroacoustics in relation to enthalpy pulsations with boundary conditions 

in respect of the Fourier transform of enthalpy disturbance and with impedance walls in 

the modified Crow-Artamonov model. 



The non-stationary flow in a centrifugal fan was calculated, and it was found that 

the mechanism of BPF tonal sound generation dominates. 
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