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ABSTRACT

Considering Fermat’s least time principle we developed 2D and 3D ocean-acoustic
raytracing propagation models. Each one consists of an algebraic differential system
of equations. So, considering Fermat’s least time principle we developed 2D and 3D
ocean-acoustic parametric raytracing propagation models based on the Euler-Lagrange
equations. Each one consists of an algebraic differential system of equations. Numerical
simulations were presented, discussed and compared with propagation predictions
obtained with a consolidated tool developed and utilized by the scientific community.
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1. INTRODUCTION

The study of underwater sound propagation is of prime importance. Indeed, in
the underwater environment, contrary to electromagnetic waves which have small
propagation ranges, acoustic waves can be used to communicate, detect objects and map
the environment, among other uses [1]. It can be shown that sound wave propagation
can be modeled as acoustic rays, namely above a well-defined sound frequency [2].
So, considering Fermat’s least time principle we developed 2D and 3D ocean-acoustic
parametric raytracing propagation models based on the Euler-Lagrange equations. Each
one consists of an algebraic differential system of equations. Numerical simulations
were presented, discussed and compared with propagation predictions obtained with a
consolidated tool developed by Val Schimdt, [3] and used by the scientific community.

2. EULER-LAGRANGE’S EQUATIONS

Considering the parametrization r (τ) = (x (τ) , y (τ)), a ≤ τ ≤ b of a 2D acoustic
trajectory γ under a velocity sound field v = v (x, y), Fermat’s least time principle states
that γ minimizes the trajectory time tA→B:

tA→B =

B∫
A

ds
v (x, y)

=

b∫
a

√(
dx
dτ

)2
+

(
dy
dτ

)2

v (x, y)
dτ. (1)

It can be shown, see fot instace [4], that the integral of function F

F
(
τ, x, y, x′, y′

)
=

√(
dx
dτ

)2
+

(
dy
dτ

)2

v (x, y)
, (2)

is minimized if F satisfies the Euler-Lagrange’s equations: d
dτ

(
∂F
∂x′

)
− ∂F

∂x = 0
d
dτ

(
∂F
∂y′

)
− ∂F

∂y = 0
. (3)

Thus, deducing,

∂F
∂x

= −
∂v
∂x

√
(x′)2 + (y′)2

v2 , (4)

∂F
∂x′

=
x′

v
√

(x′)2 + (y′)2
, (5)

d
dτ

(
∂F
∂x′

)
= −

(
(x′)4 + (y′)2 (x′)2

)
∂v
∂x +

(
x′y′y′′ − (x′)2 (y′)2

)
v +

(
(x′)3 y′ + (y′)3 x′

)
∂v
∂y

v2
√(

(x′)2 + (y′)2
)3

. (6)

and calculating also ∂F
∂y , ∂F

∂y′ e
d
dτ

(
∂F
∂y′

)
one can establish from (3) the corresponding Euler-

Lagrange’s equations: x′′y′ − y′′x′ + 1
v
∂v
∂x

(
(y′)3 + (x′)2 y′

)
− 1

v
∂v
∂y

(
(x′)3 + (y′)2 x′

)
= 0

y′′x′ − x′′y′ + 1
v
∂v
∂y

(
(x′)3 + (y′)2 x′

)
− 1

v
∂v
∂x

(
(y′)3 + (x′)2 y′

)
= 0

. (7)



The solution r (τ) = (x (τ) , y (τ)), τ ∈ [a, b] of this system of second order differential
equations will correspond to the desired 2D acoustic trajectory, that minimizes (1).
Unfortunately, these equations are singular because they are symmetric.

Assuming now a 3D ray trajectory parametrized by r (τ) = (x (τ) , y (τ) , z (τ)), a ≤ τ ≤
b and using an identical approach one can establish the 3D Euler-Lagrange’s equations
which minimize the acoustic trajectory time tA→B given by:

tA→B =

B∫
A

ds
v (x, y, z)

=

b∫
a

√(
dx
dτ

)2
+

(
dy
dτ

)2
+

(
dz
dτ

)2

v (x, y, z)
dτ. (8)

After some algebraic work one obtain:

(
(y′)2 + (z′)2

)
x′′v − (y′y′′ + zz′′) x′v −

(
(x′)2 + (y′)2 + (z′)2

)
x′ dv

dτ

+ ∂v
∂x

(
(x′)2 + (y′)2 + (z′)2

)2
= 0(

(x′)2 + (z′)2
)

y′′v − (x′x′′ + z′z′′) y′v −
(
(x′)2 + (y′)2 + (z′)2

)
y′ dv

dτ

+∂v
∂y

(
(x′)2 + (y′)2 + (z′)2

)2
= 0(

(y′)2 + (x′)2
)

z′′v − (y′y′′ + x′x′′) z′v −
(
(x′)2 + (y′)2 + (z′)2

)
z′ dv

dτ

+∂v
∂z

(
(x′)2 + (y′)2 + (z′)2

)2
= 0

. (9)

Unfortunately, these equations are also singular because system (9) is of rank two.
In upcoming sections we will describe the approach used to obtain the 2D and 3D

models for the acoustic ray propagation overcoming the problem point out.
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Figure 1: Some rays lauched from the line y = −3 and with an initially y-orientation.
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Figure 2: An arbitrary ray traveling through a complex and virtual sound field.

3. ESTABLISHMENT OF THE 2D MODEL

In order to close the 2D problem (7) we must replace one of the deduced equations by
a mathematically and physically relevant equation. Note that

tA→B =

b∫
a

√
(x′)2 + (y′)2

v (x, y)
dτ =

∫
γ

ds
v (x, y)

, (10)

does not depend on the choosen parametrization r (τ) = (x (τ) , y (τ)), a ≤ τ ≤ b, as long
as r = r (τ) fulfills natural conditions of regularity such as being of class C1 and satisfying
r′ (τ) , 0, ∀τ ∈ ]a, b[, see for instance [5]. In other words, the information needed to solve
this system, which will be written in the form of a new equation, is simply the selection
of a parametrization among a group of possible ones. So, to close the problem we can
simply adopt the condition

‖r′ (τ)‖2 = 1, (11)

which is equivalent to consider the arc legth s (τ) =
∫ τ

a
‖r′ (t)‖ dt parametrization of r (s) =

(x (s) , y (s)) because ∥∥∥∥∥dr
ds

∥∥∥∥∥ = 1. (12)

Bearing in mind equation (11) we can infer the following simplifications on (7) and
obtain: 

x′ − z = 0
y′ − w = 0
z′w − w′z + w

v
∂v
∂x −

z
v
∂v
∂y = 0

z2 + w2 − 1 = 0

. (13)

The established 2D model (13) is a system of differential algebraic equations (see for
instance [6]) which have to be numericaly solved using an implicit algorithm.
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Figure 3: Sound speed profiles used to compare the models.

We found advantage in changing the stiff purely algebraic last equation of (13)

z2 + w2 = 1,

by the softer one
zz′ + ww′ = 0. (14)

Note that (14) implies the invariance of the trajectory tangent vector’s norm. So, (11)
and (14) are equivalente whenever for some τ, ‖r′ (τ)‖2 = 1 and this happens if we define
initial conditions according. Thus, the adopted final 2D model is written as:

x′ − z = 0
y′ − w = 0
z′w − w′z + w

v(x,y)
∂v
∂x −

z
v(x,y)

∂v
∂y = 0

zz′ + ww′ = 0

. (15)

To numerically solve (15) we used a robust algorithm, developed in MATLAB by Tony
Roberts [7], suitable for differential algebraic systems.

4. 2D NUMERICAL SIMULATIONS

4.4.1. Preliminary numerical simulations

In order to preliminary test model (15) we defined Gaussian sound velocity fields, such
as

v(x, y) = k1e−k2((x−x0)2+(y−y0)2) and (16)

v(x, y) = k1

(
1 − e−k2((x−x0)2+(y−y0)2)

)
, (17)

with k1 > 0 and k2 > 0. Note that, at position (x0, y0) the velocity field (16) attains its
maximum value while (17) attains its the minimum value.
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Figure 4: Comparison between Schimdt’s tool and our parametric model using a linear
sound velocity profile.

In Figure 1 some initially y−oriented trajectories in a region with a velocity field of type
(16) are illustrated. With the exception of the acoustic ray starting at position (0,−3), the
rays bend in the direction of lower sound velocity as we expected according to Snell’s law.
The acoustic ray starting at position (0,−3) maintains a rectilinear trajectory compatible
with the symmetry associated with the configuration of the trajectory.

In Figure 2 the 2D model (15) is tested in a region with a complex sound velocity field
consisting of a linear combination of (16) and (17) type sound velocity fields with extrema
in different locations. We can observe that the model can generate the expected complex
trajectories apparently without the Snell’s law being violated.

4.4.2. Comparision with raytracing software

To be able to predict ocean-acoustic ray propagation in vertical planes Val Schimdt
[3] developed a 2D raytracing tool which has been extensively used by the scientific
community. In this section we are going to compare raytrace Val Schimdt’s predictions
with those obtained from our 2D (15) model. Note that in Schimdt’s tool the sound speed
variations are approximated by piecewise linear gradients. Under this assumption, sound
travels through each layer as a circular arc.

Differently from Schmidt’s tool, that uses a discrete data set for the sound speed profile,
our 2D model needs a class C1 function (except for a finite number of points) describing
the sound field. So, we assumed a constant water salinity of 35 ppm and we adopted the
following water temperature profile established by Joseph [8], where Ts is the surface’s
water temperature:

T (y) = −0.338 +
(Ts + 0.338)

(
1 + e−0.016y+1.244

)(
1.485 × 10−4) (Ts + 0.338) y +

(
1 + e−0.016y+1.244) . (18)

The sound speed profile given the temperature T (in Celsius degrees), the depth D
(in meters) and the salinity S (in parts per million) was analyticaly computed using
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Figure 5: Comparison between Schimdt’s tool and our parametric model using a realistic
sound velocity profile.

Makenzie’s sound velocity equation [9] and (18)

c(D, S ,T ) = (19)

= a1 + a2T − a3T 2 + a4T 3 + a5S ∗ + a6D + a7D2 − a8TS ∗ − a9T D3,

where

S ∗ = S − 35 and
a1 = 1448.96
a2 = 4.591

a3 = −5.304 × 10−2

a4 = 2.374 × 10−4

a5 = 1.340

a6 = 1, 630 × 10−2

a7 = 1, 675 × 10−7

a8 = −1, 025 × 10−2

a9 = −7, 139 × 10−13

In Figure 3 we ilustrate the two sound profiles used in the numerical simulations
performed here. In the left sound speed profile the velocity gradient is constant. The
more realistic right sound profile was computed using (19).

In Figure 4 one can observe raytrace predictions from Schmidt’s tool and our 2D
parametric model using the linear picewise sound velocity profile (the left sound velocity
profile of Figure 3). Observe that in this situation Schmidt’s tool provides accurate
predictions since we are using a linear picewise sound velocity profile. We can verify
that the predictions offered by our 2D parametric model and Schmidt’s tool agree. This
fact shows that the performance of our model, in this situation, is as rigorous as Schmidt’s
tool.
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Figure 6: First view of the 3D test: Some rays launched from arbitrary positions on the
plane x = −2 and with an x−orientation through a sound field with a maximum velocity
at (0, 0, 0), represented by a yellow and red asterisk (*).
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Figure 7: Second view of the 3D test.

In Figure 5 one can observe raytrace predictions between Schmidt’s tool and our 2D
parametric model using a more rigorous sound velocity profile (the right sound velocity
profile of Figure 3). Both simulations agree demonstrating an adequate performance of
our 2D parametric model.

5. ESTABLISHMENT OF THE 3D MODEL

As it was mentioned before the previously deduced 3D Euler-Lagrange’s equations (9)
are singular being of rank two.

Before we follow the approach used in the development of the 2D model we must
preserve all the information of the three equations (9). This requirement is met by adding
member-to-member the last equation to the first equation as well as to the second equation.
We then replace the redundant last equation of the newly modified system (9) by the
condition

x′x′′ + y′y′′ + z′z′′ = 0,
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Figure 8: Trajectory prediction of some x−oriented launched (at z = 0 plane) acoustic
rays.

which is equivalent to
‖r′ (τ)‖2 = 1,

if we define initial conditions according.
After some algebraic work and first order reduction we obtain finally our 3D parametric

model: 

x′ − a = 0
y′ − b = 0
z′ − c = 0(

1 − a2
)

a′ +
(
1 − c2

)
c′ − ac (a′ + c′) − b (ab′ + cb′)

+1
v

(
∂v
∂x + ∂v

∂z −
(

dv
dxa + dv

dyb + dv
dz c

)
(a + c)

)
= 0(

1 − b2
)

b′ +
(
1 − c2

)
c′ − bc (b′ + c′) − a (ba′ + ca′)

+1
v

(
∂v
∂y + ∂v

∂z −
(

dv
dxa + dv

dyb + dv
dz c

)
(b + c)

)
= 0

aa′ + bb′ + cc′ = 0

. (20)

Some numerical simulations using the robust algorithm developed in MATLAB by
Tony Roberts [7] will be presented in the next section.

6. 3D NUMERICAL SIMULATIONS

In order to preliminary test our 3D model (20), and considerering k1 > 0 as well as
k2 > 0, the following 3D Gaussian type velocity model were defined:

v(x, y, z) = k1e−k2((x−x0)2+(y−y0)2+(z−z0)2). (21)

In Figures 6 and 7 we display the predicted trajectories of some rays x−oriented
launched from arbitrary at plane x = −2 in a region with a velocity field of type (21).
With the exception of the acoustic ray starting at position (−2, 0, 0), the rays bend in the
direction of lower sound velocity as we expected according to Snell’s law. The acoustic
ray starting at position (−2, 0, 0) maintains a rectilinear trajectory compatible with the
symmetry associated with the configuration of the trajectory.



In Figure 8 we display the predicted trajectories of some rays x−oriented launched
from positions (−3, 1, 0), (−3,−1, 0), (−1,−1, 0) and (−1,−1, 0) , in a region with the
same velocity type field. One can observe that the predicted ray trajectories remain in the
same plane as is expected.

The results of the numerical simulations performed here seem to be satisfactory.
However it will be necessary to carry out later in an upcoming work an adequate
validation of the results of our 3D acoustic ray propagation model.

7. CONCLUSIONS

Taking into account the simulations and the arguments presented, we can draw the
following conclusions:

– The trajectories generated by our 2D model (15) seems to be sufficiently robust to
accommodate the simulation of complex trajectories.

– The trajectories generated by our 2D model and by Schimdt’s raytracing tool
coincide in regions corresponding to common domains of use.

– Despite the need for adequate future validation of our 3D model (20) preliminary
numerical simulations suggest that it perform satisfactory.

8. FUTURE WORK

Based on the 2D (15) and 3D (20) parametric models of sound propagation presented
we envisage the following upcoming developments:

– Perform an appropriate validation of the 3D model.

– Develop the possibility of simulation 2D and 3D acoustic ray trajectories the
presence of reflections.
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