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ABSTRACT 
When rigid inclusions are inserted in homogeneous porous layers in a periodic 
manner, sound absorption performance can be modified considerably. The resulting 
inhomogeneous porous layers, which can work as sonic crystals or metaporous 
layers, exhibit directional effects in dissipating sound power. While global quantities, 
such as the sound absorption coefficient and the surface impedance are typically 
used in evaluating sound absorption performance in porous layers, keen attentions 
to the directional characteristics in sound power dissipation may provide important 
insights to design sonic crystals or metaporous layers yielding highly enhanced 
sound absorption performance. In this work, we study the directional effects in 
dissipating sound power in a hard-backed porous layer embedding periodic rigid 
inclusions. Supported by analytical derivations, the amount of dissipated sound 
power is numerically divided along the thickness and lateral directions of the 
considered porous layer. The relative contributions of each direction in the total 
sound power dissipation are evaluated quantitatively over frequencies of interest. 
Numerical examples show that the present directional analysis and evaluation 
scheme of the dissipated sound power can be used effectively in the design of highly 
performing porous layers. 
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1. INTRODUCTION 

Porous materials [1,2] are widely used for noise reduction by their superior sound 
dissipating capability. Since porous materials are generally most effective in sound 
dissipation in a relatively high-frequency range, installations of thicker porous layers are 
inevitable in order to absorb a large amount of lower-frequency sound. To overcome the 
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limitation of the use of porous materials in low-frequency range, many attempts have 
been made in acoustic fields. Conventionally, additional uses of different acoustic 
elements have been employed with porous materials [3]. As a more systematic strategy, 
optimal sequencing [4,5] or shaping [6-8] of porous materials were also investigated.  

Recently, many researches to adopt the concept of acoustic metamaterials to the 
porous materials have received much attention [9-18]; elaborately engineered periodic 
structures were embedded in porous layers to utilize the phenomena resulting from the 
Helmholtz resonances [11,12,14,16],  trapped modes [9-14,16,17], resonance modes of 
elastic inclusions [17], wave path elongation [15] and slow wave propagation [18], etc. 
Such combinations of porous layers with the concept of acoustic metamaterials, which 
are usually referred to as metaporous layers, have been successful to realize enhanced 
performance in sound absorption. Among them, some works have investigated the 
characteristics of sound dissipation in metaporous layers, such as viscous and thermal 
losses [9,12], which originate from sound-absorbing porous media.  

We focus on the directional characteristics of sound power dissipation in 
metaporous layers. In other words, this work is intended to provide a new insight for 
sound absorption performance of metaporous layers in the viewpoint of its directional 
properties. By focusing on the spatial variation of power flow in metaporous layers, we 
quantify the directional contribution of power dissipation on the sound absorption and 
explain different dissipation phenomena at peak frequencies. For this exploration, we 
propose to look into the sound power dissipation along the layer thickness direction and 
its normal direction, separately. 

 
2.  SOUND POWER DISSIPATION IN POROUS LAYERS 

When the homogenization method widely adopted in the analysis of the acoustic 
metamaterials in subwavelength dimensions is used for metaporous layers, their sound 
absorption performance can be well predicted by means of global quantities, such as 
sound absorption coefficient and surface impedance under the plane wave assumption. 
Using these quantities, one can estimate the total amount of dissipated sound power inside 
metaporous layers, but it is not possible to identify the directional contributions of sound 
power dissipation inside the layers. In arguing the necessity to investigate the directional 
characteristics of power dissipation, we observed that a homogenous porous layer under 
plane acoustic wave incidence from air dissipates sound power only along the thickness 
direction. This unidirectional sound power dissipation pattern remains unchanged even if 
a sound wave is obliquely incident as shown in Figure 1(a).  

 

Figure 1. Comparison of sound power dissipations when sound wave is incident on a 
hard-backed (a) homogenous porous layer and (b) porous layer with rigid inclusions, 
respectively. 



That is because a plane wave propagating inside homogeneous dissipative layers 
lose power along the direction perpendicular to the interface when it is incident from non-
dissipative medium to homogeneous dissipative medium. Note that this finding also 
applies to sound dissipation in homogenized (or homogeneous) dissipative anisotropic 
media [19,20]. 

When rigid inclusions are inserted in the homogenous porous layer, on the other 
hand, the incident sound power can be dissipated in multiple directions due to the 
formation of additional interfaces inside the layer. Figure 1(b) suggests that the sound 
power dissipates not only along the thickness direction, but also along the lateral direction 
when the inclined rigid inclusions are periodically inserted. From Figure 1(b), it can be 
argued that this directional sound dissipation property affects the overall sound absorbing 
capability of a metaporous layer over a frequency range of interest. 

To investigate the directional characteristics of the dissipated sound power, we 
carry out a decomposition of the dissipated sound power into two orthogonal directions 
by using spatial differentiations of time-averaged acoustic intensities. Although the 
dissipated power is a scalar quantity, the quantification of its directional contribution is 
quite useful to interpret the sound power dissipation directionally and also to design 
enhanced metaporous layers. For examples, we can investigate how distribution of the 
rigid inclusions inside a metaporous layer affects the overall and directional power 
dissipation. We can also examine which direction makes a dominant effect in the peaks 
of sound absorption coefficient curve. Finally, we can consider a design problem for 
highly performing metaporous materials by addressing the directional effects of sound 
power dissipation. 
 
3.  CONCLUDING REMARKS 

We investigated the directional characteristics of sound power dissipation, which 
is found in metaporous layers embedding rigid inclusions, not in a homogeneous porous 
layer. The proposed directional concept of sound power dissipation offers a unique 
perspective into the dissipation performance of metaporous layers and is expected to play 
an important role in the design of various metaporous layers. 
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