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ABSTRACT 
Acoustic black hole (ABH), a thin wedge type structure with its thickness is tailored 
according to the power-law of power (m) greater than or equal to two, has received 
much attention from the researchers due to its potential as a light and effective 
absorber of flexural waves propagating in beams or plates. In this paper, the Euler-
Bernoulli equation for the ABH of m>2 is reformulated into the form of a 
generalized hypergeometric differential equation. The exact solution is then derived 
in terms of generalized hypergeometric functions (pFq) where p=0 and q=3 by 
classifying the power m into four cases. The derived solution is in linearly 
independent form without singularities for arbitrary m. In addition, by using the 
exact solution, the displacement field of a uniform beam with an ABH and the 
reflection coefficient from the ABH are calculated to show the applicability of the 
present solution. This paper aims at establishing a mathematical and theoretical 
foundation for the study of the ABHs. 
 
Keywords: Acoustic black hole, Elastic wave, Euler-Bernoulli beam, Wave absorption  
I-INCE Classification of Subject Number: 47 

 
1. INTRODUCTION 

The acoustic black hole (ABH) effect has received much attention from researchers 
during the last decade as a potential technique to achieve light and effective absorption 
of flexural waves in thin structures such as beams or plates. The ABH is a thin wedge 
whose thickness is reduced according to the power-law function of power (m) greater than 
or equal to two [1]. In theory, when the thickness of the ABH gradually decreases to zero, 
flexural waves that propagate to the tip of the ABH are slowed down to zero-speed and 
dissipated completely during their travel. However, since the tip of the ABH is always 
truncated and has a finite thickness in reality, the waves are unavoidably reflected from 
the tip [1]. To absorb the waves near the truncated tip, a method of treating the tip of the 
ABH with a viscoelastic damping layer was proposed [2].  

Following the early researches, numerous studies have been conducted in recent years 
to study the ABH effect further and to apply the ABH in practice. Examples of 
experimental studies are listed as follows: the experimental realization of the ABH [3], 
harvesting the energy within the tip region of the ABH [4,5], and measurement of the 
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sound radiated from the vibration of the ABH [6]. Examples of computational studies are 
listed as follows: the study [7] on vibroacoustic performance of the two-dimensional ABH, 
and the geometrical modification [8] on the ABH with a spiral shaped-baseline. In 
addition to the diverse computational and experimental studies on the ABH, there have 
been several theoretical studies on the flexural wave motion in the ABH and the vibration 
of the ABH-attached structures. O’Boy et al. [9] investigated the vibration of a rectangular 
plate attached to an ABH by solving the eikonal equation for the ABH. Georgiev et al. 
[10] obtained the reflection matrices of an ABH by numerically solving a matrix Riccati 
equation. Denis et al. [11] presented a multimodal model of an ABH to study the effect 
of tip imperfections on the reflection characteristics of the ABH. Aklouche et al. [12] 
investigated the flexural wave scattering from a two-dimensional ABH embedded in an 
infinite plate by deriving the exact solution for the two-dimensional ABH of m = 2. Tang 
et al. [13] established a semi-analytic model that uses Mexican hat wavelets as basis 
functions to approximate the displacement field of a uniform beam attached to an ABH.  

In this paper, the Euler-Bernoulli equation for the ABH is studied mathematically, and 
the exact solution is derived for arbitrary m (≥2). In Section 2.1, it is shown that the 
original form of the Euler-Bernoulli equation for m = 2 belongs to the Cauchy-Euler 
equation and the solution is obtained as a linear combination of monomials. In Section 
2.2, the Euler-Bernoulli equation for m > 2 is reformulated into the generalized 
hypergeometric differential equation by changing the variables. Then, four linearly 
independent solutions of the Euler-Bernoulli equation for m > 2 are obtained in regular 
form without singularities by dividing the power m into four cases. 
 
2.  Exact solution for the ABH in the case of arbitrary power m  

The governing equation for a beam neglecting the rotational inertia and shear 
deformation, i.e., an Euler-Bernoulli beam, is written as the following for the time-
harmonic transverse displacement 𝑊𝑊(𝑥𝑥, 𝑡𝑡): 
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Here, 𝑥𝑥 is the distance along the neutral axis of the beam and 𝑡𝑡 is the time. 𝜌𝜌 and 𝐸𝐸 are 
the mass density and Young’s modulus, and 𝜌𝜌 and 𝐸𝐸  are the cross-sectional area and 
second moment of area, respectively. Assuming the time dependence of 𝑊𝑊 to be of the 
form ej𝜔𝜔𝜔𝜔 (j = √−1) with angular frequency 𝜔𝜔, Equation 1 can be rewritten as  
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in terms of the time-harmonic transverse displacement 𝑤𝑤(𝑥𝑥). 
When the cross-section is rectangular and the thickness is tailored in the form of the 

power-law function (ℎ(𝑥𝑥) = 𝜀𝜀𝑥𝑥𝑚𝑚 for 𝑚𝑚 > 0, 𝑥𝑥 > 0) as depicted in Fig. 1, Equation 2 is 
recast into Equation 3: 
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where 𝜉𝜉 is a constant 12𝜌𝜌𝜔𝜔2/𝐸𝐸𝜀𝜀2 depending on the frequency, material properties and 
shape of the beam. 



 
Figure 1: A schematic of an Euler-Bernoulli beam whose thickness is tailored in the form 
of the power-law function (ℎ(𝑥𝑥) = 𝜀𝜀𝑥𝑥𝑚𝑚 for 𝑚𝑚 > 0, 𝑥𝑥 > 0) with a constant width. 

 
In case that the power m is equal to or greater than 2, the tailored beam is referred to 

as the ABH [2], and thus, the exact solution of the Euler-Bernoulli equation for the ABH 
can be obtained by solving Equation 3. 

In Section 2.1, the exact solution for the ABH of m = 2 is derived, and in Section 2.2, 
the exact solution for the ABH of m > 2 is derived. In Section 2.3, by using the present 
exact solutions for the ABH, two problems related to ABH are solved and compared with 
a numerical simulation and an existing theory based on geometrical acoustics. 

 
2.1 Exact solution for the ABH of m = 2 

In the case of m = 2, Equation 3 is rewritten as Equation 4. 
 

𝑥𝑥4𝑤𝑤′′′′(𝑥𝑥) + 12𝑥𝑥3𝑤𝑤′′′(𝑥𝑥) + 30𝑥𝑥2𝑤𝑤′′(𝑥𝑥) − 𝜉𝜉𝑤𝑤(𝑥𝑥) = 0 (4) 
 
Since Equation 4 belongs to the Cauchy-Euler equation, the solution can be expressed by 
a linear combination of monomials as obtained in Equation 5 
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where 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3 and 𝐶𝐶4 R are constants determined by the boundary conditions.  

 
2.2 Exact solution for the ABH of m > 2 

In the case of m > 2, define the variable z as follows: 
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By using a differential operator ϑ �= 𝑧𝑧 d

d𝑧𝑧
�, Equation 3 can be recast into the following: 
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Equation 7 belongs to a type of special ordinary differential equation named the 
generalized hypergeometric differential equation (GHGE) [14]. The general form of the 
GHGE is written as 
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where 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑞𝑞  are referred to as denominator-parameters and 𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾𝑝𝑝  are 
referred to as numerator-parameters.  

Exact solution of the GHGE can be obtained in terms of a special function called 
the generalized hypergeometric function (GHF) [14] which is defined as 
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Here, (∙)𝑛𝑛 denotes the Pochhammer symbol or the rising factorial defined as below:  
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 (10) 

 
where ℕ denotes the set of all natural numbers.  
By comparing Equation 7 with Equation 8, it can be seen that Equation 7 belongs to the 
GHGE in the case of p=0 and q=3, and the corresponding denominator-parameters are 
𝛼𝛼1 = 3−2𝑚𝑚

4−2𝑚𝑚
, 𝛼𝛼2 = 2+𝑚𝑚

4−2𝑚𝑚
 and 𝛼𝛼3 = 1+𝑚𝑚

4−2𝑚𝑚
.  

 
2.3 Explicit form of exact solution 

Let 𝛼𝛼0 = 1 , 𝛼𝛼1 = 3−2𝑚𝑚
4−2𝑚𝑚

, 𝛼𝛼2 = 2+𝑚𝑚
4−2𝑚𝑚

 and 𝛼𝛼3 = 1+𝑚𝑚
4−2𝑚𝑚

, and let 𝛽𝛽𝑖𝑖𝑖𝑖 = 1 − 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖 
for 𝑖𝑖, 𝑗𝑗 = 0,1,2,3. Then, we have the following 1-tensor and 2-tensor: 
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(12) 

 
By using the tensors 𝛂𝛂 and 𝛃𝛃 defined in the previous section, the general solution of 

Equation 7, 𝑤𝑤(𝑥𝑥), can be expressed by a linear combination of the four independent 
functions in terms of the generalized hypergeometric series of 0F3: (See the reference [15] 
for detailed procedures) 

 
𝑤𝑤(𝑥𝑥) = 𝐶𝐶0𝑤𝑤0(𝑥𝑥) + 𝐶𝐶1𝑤𝑤1(𝑥𝑥) + 𝐶𝐶2𝑤𝑤2(𝑥𝑥) + 𝐶𝐶3𝑤𝑤3(𝑥𝑥) where 

𝑤𝑤0(𝑥𝑥) = F30 (−;𝛽𝛽01,𝛽𝛽02,𝛽𝛽03; 𝑧𝑧), 
𝑤𝑤1(𝑥𝑥) = 𝑧𝑧

1
4−2𝑚𝑚 F30 (−;𝛽𝛽10,𝛽𝛽12,𝛽𝛽13; 𝑧𝑧), 

𝑤𝑤2(𝑥𝑥) = 𝑧𝑧
2−3𝑚𝑚
4−2𝑚𝑚 F30 (−;𝛽𝛽20,𝛽𝛽21,𝛽𝛽23; 𝑧𝑧), 

𝑤𝑤3(𝑥𝑥) = 𝑧𝑧
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3.  CONCLUSIONS 
In this study, we provided a rigorous foundation for theoretical and mathematical 

research for the ABHs by deriving the exact solution of the Euler-Bernoulli equation for 
ABH in the cases of arbitrary power m (≥2). For m = 2, the original form of the Euler-
Bernoulli equation belongs to the Cauchy-Euler equation, and the exact solution was 
obtained as a linear combination of four monomials. For m > 2, the Euler-Bernoulli 
equation was transformed into the generalized hypergeometric differential equation via 
two steps of change of variables, and the exact solution was derived in terms of four 
generalized hypergeometric series. 
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