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ABSTRACT 
This paper deals with the flexural-torsional dynamics of finite beams with many 
spring-mass absorbers periodically attached. Especial emphasis is given to the 
description of the vibration absorption properties and the bandgap formation. As 
an example of structures presenting dynamic coupling between bending and 
torsion, a channel beam is considered.  Vlasov´s theory is employed to formulate 
mathematically the problem.  An exact analytical solution is given for the free and 
forced vibration of the metamaterial beam.  The attenuation of the dynamic forced 
response of the beam, by selecting appropriately the absorbers’ parameters, is 
numerically analysed with the help of the obtained analytical solution. 
Natural frequencies of the system are used for establishing a criterion to determine 
the bandgap edge. Finally, an approximate simple procedure is proposed to 
estimate the bandgap frequency range using only the inertial properties of the 
beam. This procedure is applicable to arbitrary end conditions. 
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1. INTRODUCTION 
 

In the last years, the study of metamaterials consisting of locally resonant periodic 
structures has attracted the attention of several researchers due to their interesting 
properties related to sound and vibration attenuation in low frequencies. In fact, 
metamaterial structures exhibit frequency ranges, known as bandgaps, where elastic 
waves cannot propagate.  This kind of structures finds interesting potential applications 
as broadband vibration absorbers, wave guiding and filtering.  

A simple and non-expensive way to construct a metamaterial is by coupling, in a 
periodic arrangement, small spring-mass subsystems to beams or plates.  

The idea of using locally resonant acoustic metamaterials is borrowed from the 
theory of electromagnetic waves that present bandgaps at wavelengths much longer that 
the distance between atoms. Liu et al. [1] have demonstrated that locally resonant 
acoustic metamaterials display bandgaps similar to electromagnetic materials.  Yu et al. 
[2] have analysed the formation of flexural bandgaps in Euler-Bernoulli beams coupled 
to spring-mass subsystems with two-degrees of freedom. Sun et al. [3] present a 
theoretical development and numerical validation of metamaterial beams, with many 
small spring-mass-damper subsystems integrated at locations along the length, for 
broadband absorption of transverse elastic waves. Recently, Cveticanin and Mester [4] 
presented an overview of the theory of metamaterial beams. 

In general, the above mentioned works, and other related, have analysed the bandgap 
formation based on the features of waves travelling along infinite structures made from 
repeated unit cells. This approach is appropriate for studying absorption properties in 
very long structures. However, for finite structures, especially in the range of low 
frequencies, it is more convenient to use methods of modal analysis.  In this connection, 
a new idea was recently proposed by Sugino et al. [5] in order to determine the bandgap 
behaviour of finite length Bernoulli-Euler beams with periodically attached spring-mass 
resonators. Their proposal consists in considering the modal analysis of a finite beam 
with an infinite number of resonators as the dual problem of wave propagation through 
an infinite periodic beam.  This new concept allows to consider in a unified way the 
modal behaviour of finite beams and the dispersion properties of infinite beams. With 
the developed methodology Sugino et al. [6] have obtained a simple formula for placing 
a bandgap in a desired frequency range. This is very useful for design purposes.   

Sugino’s approach was firstly developed for flexural vibrations in beams and later 
extended to consider, in a unified form, uncoupled longitudinal or torsional vibrations 
of rods and transverse vibrations in plates with many coupled absorbers.  However, the 
important case of coupled flexural-torsional vibrations of beams having periodically 
attached spring-mass resonators was not studied. This kind of structures is very used in 
several applications of engineering systems. One of the few works analysing flexural-
torsional vibration bandgaps in infinite beams made of periodic material was developed 
by Jian-Yu et al. [7]. 

In this work, the attenuation of the vibrations of finite thin-walled beams by using 
many small spring-mass absorbers is analysed. As an example of structures presenting 
dynamic coupling between bending and torsion, a channel beam is considered. 
Particular attention is given to the mechanism of bandgap formation. Following 
Sugino’s approach a modal analysis for finite thin-walled beams with an infinite of 
vibration absorbers is employed. Vlasov´s theory [8, 9] is employed to formulate 
mathematically the problem.  An exact analytical solution is given for the free and 
forced vibration of the metamaterial beam. The attenuation of the dynamic forced 
response of the beam, by selecting appropriately the absorbers parameters, is 



numerically analysed with the help of the obtained analytical solution. Natural 
frequencies of the system are used for establishing a criterion to determine the bandgap 
edge. Finally, an approximate simple procedure is proposed to estimate the bandgap 
frequency range using only the inertial properties of the beam.  This procedure is 
applicable to arbitrary end conditions. 
 
2.  FLEXURAL-TORSIONAL DYNAMICS OF THIN-WALLED 
METAMATERIAL BEAMS 
 
2.1 Governing equations  
  

 
Figure 1: Thin-walled beam with spring-mass resonators periodically attached 

 
The thin-walled beam with N attached spring-mass absorbers shown in Figure 1 is 

considered. Taking into account that the cross sectional shape has only one symmetry 
axis, the beam will present coupled flexural-torsional dynamics. Such kind of structure 
may be described mathematically according to the Vlasov theory. The corresponding 
governing equations are given by [7, 8]: 
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where sw  and   are the transverse displacement (corresponding to the shear center) and 

the torsional rotation, i is the displacement of the mass located at ix , , , ,s sA I y   are 

the material density, cross-sectional area, cross-sectional moment of inertia with respect 
to the shear center and shear center coordinate with respect to the centroid, 
respectively ;  K and M  are the stiffness and the mass of each absorber , My is the cross-

sectional coordinate of the absorber location respect to the centroid, , ,z tq m   

correspond to transverse and twisting distributed loadings and external frequency 
respectively, N is the number of resonators and ( )i ix x    is the Dirac function. 



On the other hand, ,z svM T  and B are the bending moment, Saint-Venant twisting 

moment and bi-moment respectively. Their relationships with the displacements are 
given by:  
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where , , , wE G J C are the elasticity modulus, transverse elasticity modulus, torsional 

constant and warping constant. Obviously, the System 1 has appropriate boundary 
conditions associated. 

In order to solve the System 1, harmonic vibrations are assumed: 

 ( ) cos( ), ( )cos( ), cos( )s s i iw W x t x t t              (3) 

Substituting Expressions 3 into Equations 1 and 2 and eliminating i of the resultant 

system, the following equations are obtained:  
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where , sA Ay  and sI are generalized sectional inertia properties expressed as: 
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with  

 total
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M isthe natural frequency of an isolated absorber and  is the ratio between the 

total mass of the attached resonators and the beam mass. It has to be noted that for 
obtaining Equations 4 and 5 an infinite absorbers approximation was employed. That is 
to say Dirac functions were substituted by 1/ Ml where Ml  is the distance between 

absorbers. In fact, absorbers were considered to be continuously distributed. This 
approximation is consistent for many absorbers placed regularly along the beam [5]. On 
the other hand, the following relationships have been considered: 
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2.2 Free and forced vibrations of simply supported thin-walled metamaterial 
beams  

Consider the beam with simply supported ends mathematically expressed as: 

 0, 0, at 0,s zw M B x x L x x L             (8) 

The exact solution for the Systems 4-7 may be obtained by expressing the unknowns 
and the loadings as Fourier series:  
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It has to be noted that with Expressions 9, the Boundary Conditions 8 are identically 
satisfied. Now, substituting Expressions 9 and 10 into Equations 4-7, one can obtain the 
following two-equation algebraic system for every value of n. 
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  The solution of the above algebraic linear system may be expressed in the following 
form: 
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where: 
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                                                                                                                               n=1, 2 ,3,… 

To determine the natural frequencies of free vibration ( 0z tq m  ), the determinant 

of the system should be null for every value of n:   

 ( ) 0,n n    1, 2,3,...n              (14) 

For the structure without absorbers, Expression 14 constitutes a biquadratic equation 
whose roots are two natural frequencies for every value of n.   



 
0 0
1 20 ,n n         (15)  

For the case of the beam with attached absorbers, Expression 14 is a bicubic 
polynomial equation having three roots. It is possible to demonstrate that two of them 
nL and nU are limiting M  from below and above:   

 0 , ,nL M nU          (16) 
 

3.  ATTENUATION OF DYNAMIC RESPONSE AND BANDGAP FORMATION   

3.1 Analysis of forced response   
The practical use of this kind of metamaterial beams is to attenuate amplitudes of 

vibration in comparison with the original structure (without resonators). This analysis 
may be performed in a quick manner by calculating the deformed shape of the beam      
with or without absorbers (=0) using Expressions 12 and 9, and then comparing the 
vibration amplitudes. In order to obtain vibration absorption near certain target 
frequency T  (generally a certain natural frequency of the system without absorbers), 

the resonator frequency M should be selected slightly lower (for example 0.9M T  ). 

In fact, according to Equation 16, the resonance of the original system (associated with 

T ) will be transformed into two resonances, one of each side of the target frequency 

(at nL  and nU ).  Thus, in the frequency range ( nL , nU ) the vibration amplitudes 

could be attenuated.  For example, Figure 2 presents (in a semi-logarithmic scale) the 
amplitudes of transverse vibrations (corresponding to n=3) at the middle of the beam 
without (=0) and with absorbers (=0.5) for the numerical data given in the Appendix. 
The local resonance M  has been selected as 0.9 T , being the target frequency 

coincident with one of the natural frequencies of the original system (3942 rad/seg for 
n=3). As shown, the absorbers caused the elimination of the resonance corresponding 
the original system although two new lateral resonances have emerged, one on each side 
of the target frequency ( 3150nL   and 5000nU   rad/seg). The dynamic response 

was attenuated approximately in the range (3300, 4600 rad/seg). This Figure shows the 
absorption of vibration only for the mode most affected by the dynamic loading (n=3). 
However, the interest is the full dynamic response (considering a high number of terms 
in Expression 9). This is shown in Figure 3. As observed, the original resonance does 
not appear. However, vibration attenuation is given in a lower range (3400, 4250 
rad/seg.). This is due to the fact that external frequency could be close to another 
natural frequency of the original system. 

 



 
 

Figure 2: Dynamic response of the beam at x=L/2 for the Ws component n=3: 
( (3 / 2))abs sin   (blue line: without resonators, yellow line with resonators, =0.5) 

.     
 3.2 Natural frequencies criterion for locating the bandgap       

Another approach to analyse the frequency range of vibration absorption is by 
studying the natural frequencies of the metamaterial beam with respect to the original 
beam (without absorbers). In fact, once obtained the natural frequencies nL and nU  

limiting the local resonant frequency, it is possible to recognize the vibration attenuation 
range between these two frequencies because of the non-existence of resonance. 
However, as explained in connection with Figure 3, one should verify that the external 
frequency does not coincide with any natural frequency associated with another value 
of n. Figure 4 presents the variation of natural frequencies, nL and nU , as a function 

of n (that is related with the modal wavelength). The painted band shown in Figure 4 
indicates the values of the external frequency  that cannot produce resonance. This is 
the vibration attenuation frequency range or bandgap. As shown in the Figure, this 
bandgap corresponds to the range (3550, 4250 rad/seg). The first of these values 
coincides with the local resonance absorber frequency M . This is a general result (as 

will be explained in the following section) and this is the reason for which, from the 
point of view of design, M should be slightly lower than T . In fact, bandgap is 

formed to the high frequency side of the local resonance frequency of the absorber (M).     



 
Figure 3: Dynamic response of the beam at x=L/2: ( ( / 2))sabs W L  (blue line: without 

resonators, yellow line with resonators, =0.5) 
 

 
 

Figure 4: Natural frequencies ( nL  and nU ) limiting the local resonator frequency 

( M ) as a function of the shape modal number n. 

 



3.3 General approximate procedure for locating the bandgap   
It is useful to observe in Figure 4, after interpreting the value n as a continuous 

variable, that an approximation for the frequencies limiting the bandgap may be 
obtained adopting the values corresponding to n=0. These values are 3550 and 4400 
rad/seg. The first coincides with the local absorber frequency and the second is slightly 
upper than the bandgap limiting frequency obtained with the above forced vibration 
analysis. However, this approach for obtaining the bandgap limiting frequencies   
presents some advantages. To understand such advantages, it is convenient to rewrite 
Equations 11 (with qn =0 and mn =0) in the following matrix form:   

  2 0n n K M X      (17) 

where: 
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It is important to note that when n=0, stiffness matrix nK  becomes a null matrix and 

then Equation 17 is equivalent to the equation: 

 ( ) 0 M      (19) 

In fact, the roots of this equation are the frequencies limiting approximately the 
bandgap and correspond to the values shown in Figure 4 for n=0. It is important to 
realize that Equation 19 only depends on the inertial properties of the original beam and 
not on its stiffness properties (nor on the modal number n). In this way, Equation 19 is 
applicable to beams having arbitrary boundary conditions. It is possible to demonstrate 
analytically that lower root of Equation 19 is M .    

 Another justification for the use of Equation 19 may be established by observing the 
general mathematical structure of Equations 17 and 18. In fact, one can note that nK is a 

positive-definite matrix.  In this way, if M  is also positive-definite, the System 17 
admits positive eigenvalues 2

n . However, if M  is not positive-definite, Equation 17 

may not admit positive eigenvalues, which means the non-existence of resonance for the 
values of  causing this fact in M.  

 Therefore, it is possible to determine an approximation to the bandgap by   
calculating the eigenvalues of matrix M:  

   0 M I X      (20)  

From the above system one obtains: 
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If 1 0   or 2 0  , M  is not positive-definite and then the frequencies limiting this 

zone constitute the approximate bandgap. These last ones correspond to 1 and 2 =0, but 
for these cases Equation 20 is the same as Equation 19. Thus, the procedure 
corresponding to Equation 19 is again justified. In Figure 5, the values of the indicator 

MI  is given as a function of Such anindicator is defined to be 1, if the eigenvalues 1 

and arepositive, and 0 otherwise. In this way, the range where 0MI   corresponds 

approximately to the bandgap. The limiting frequency values coincide with the roots of 
Equation 19, M  being the lowest limit.  It is interesting to note that this procedure 

reproduces the formula of Sugino et al. for non-coupled flexural or torsional vibrations 
( 0s My y  ).   

 

 
 
Figure 5: Indicator of the Mass Matrix eigenvalues signs MI  (=1 if 1 or 2 are positive, 

and 0 otherwise; Bandgap when MI =0) 

 
4.  CONCLUSIONS 

Coupled flexural-torsional dynamics of metamaterial structures consisting of a thin-
walled beam with many spring-mass resonators periodically attached is studied. 
Especial emphasis was done in describing the vibration absorption properties and the 
bandgap formation. The problem was formulated by means of the Vlasov´s theory. An 
exact analytical solution is obtained for free and forced vibration for simply supported 
channel beams under the assumption of continuously distributed absorbers along the 
length. Three approaches were proposed for analysing the frequency range where 
attenuation of vibration is produced. The first one is based on the analysis of the 
dynamic response of the structure under certain dynamic loading. The second one is 
based on the calculation of the natural frequencies limiting the local resonant absorber 
frequency as a function of the wavelength (or the modal shape number n). Both 
methodologies are appropriate to estimate accurately the bandgap location and width.  A 



third approximate methodology was proposed based on the analysis of the inertial 
properties of the original beam. This last approximate procedure is very simple and can 
be used for thin-walled beams with arbitrary boundary conditions. Cross sectional 
shapes with only one axis of symmetry were analysed. However, the methodology may 
be extended in a straightforward manner for considering completely asymmetric cross-
sectional shapes.    
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APPENDIX 
 
Numerical Data: 
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