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ABSTRACT 

This work aims to investigate the vibration absorption performance of membrane-

type metamaterial on a thin plate. Simulation work was conducted on membrane-

type metamaterial using membrane resonators with various configurations of 

decorated masses. The bandgap property of membrane-type metamaterial with 

multiple masses was investigated. It was found that a slight adjustment of location 

for the decorated masses could result in a 45 Hz change of the membrane-type 

metamaterial bandgap location. Through the simulation work, the vibration 

transmissibility of a thin plate attached with membrane resonators was studied and 

it was showed that this membrane-type resonator could effectively suppress the 

vibration of a thin plate. 
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1. INTRODUCTION 

The development and application of metamaterial with localized resonant resonators 

have been vastly investigated in the recent decade [1-3]. The invention of phononic 

crystal (PC) can be considered as a result of the study of negative property phenomena 

(e.g. in terms of bulk modulus, mass density) by Veselago [4], which theoretically 

demonstrated that in certain conditions, the material can reveal negative properties that 

are not observed in natural properties of conventional materials. In PC materials, the 

periodicity of structure can be constructed to generate a particular Bragg bandgap that 

can stop the propagation of structural vibration waves. The periodicity of structure is 

therefore very important for the PC material, although it has also created a limitation for 

its application in the low frequency range. When the incident structural wave is at a 

relatively lower frequency, the structural wavelength will be larger, which leads to the 

requirement to increase the size of PC accordingly. One of the solutions of this dilemma 
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is by utilising the localised resonance phenomenon that was proposed by Liu et al [5]. 

They fabricated a new material that can attenuate the propagation of structural wave in a 

sub-wavelength lattice constant, which can be considered as the acoustic metamaterial 

(AM). Yang et al. [6] proposed the membrane-type acoustic metamaterial (MAM), which 

was composed by a pre-stressed membrane fixed on a rigid frame and mass attached on 

the membrane. The membrane resonator can be regarded to be equivalent to the mass-

spring model. Compared with other metamaterials, MAM is generally lighter and cheaper 

to be manufactured. Its resonance frequency can also be tuned by the applied tensile stress 

[7]. In the majority of former studies, MAM was typically used for the sound isolation 

[8-12], with only limited studies have looked into its potential for absorbing structural 

vibration. Sun et al. [13] placed two single membrane resonators on a plate and 

demonstrated the feasibility of using membrane resonators for structural vibration 

control. However, the use of membrane resonator has not yet been fully investigated, 

particularly in terms of how their configuration can be optimized.  

This work investigated the bandgap property and vibration absorption performance of 

membrane resonator with different configurations of decorated masses attached on 

membrane. Simulation is conducted using the commercial finite element analysis (FEA) 

software COMSOL Multiphysics. The model of membrane resonator is developed using 

periodic boundary conditions for the investigation of its bandgap property. It was found 

that the change of configuration of decorated masses can be an effective way for enabling 

the tuning of membrane resonator’s resonant frequency and therefore the associated 

bandgap location. In addition, the change of mass for the decorated masses was also found 

to be linked with the vibration absorption performance.   

 

2.  DESIGN OF THE MEMBRANE RESONATOR’S STRUCTURE  

Previous studies have indicated that the fabrication of a membrane resonator can be 

relatively easy compared to other types of metamaterial. By changing the applied tension 

level of the membrane, the membrane-type metamaterial’s bandgap location can be 

adjusted accordingly. This is believed to be an effective way to tune the operation 

frequency of membrane-type metamaterial, as investigated by a number of researchers 

[14, 15]. However, as the membrane resonator is very sensitive to the applied tension, the 

inconsistency in fabrication may cause serious inaccuracy in its operation frequency [16]. 

Therefore, it will be helpful to develop a tuning method that is easier to be accurately 

conducted, and cause less inconsistency to the design. Since aside from the membrane 

tensile stress, the decorated mass is another decisive factor of the membrane resonator’s 

resonant frequency. In this case, we implement changes to the allocation of attached 

masses to study its influence to the vibration absorption performance.   

Normally, in a membrane resonator, a single mass is attached to the middle of the 

membrane. In this work, the membrane resonator with 3 attached masses were studied. A 

3D model was constructed in COMSOL Multiphysics. The configuration of the unit cell 

was presented in Figure 1. The masses are aligned averagely in the middle line of the 

membrane, the distance d between each other was chosen as the parameter for reference. 

The materials for the membrane, frame and mass were chosen as rubber, epoxy and 

copper respectively. The Young’s modulus, density and Poisson’s ratio of membrane are 

20 MPa, 980 kg/m3 and 0.49 respectively, and the side length L of the resonator is 60mm.  



 
Figure 1. The configuration of the membrane resonator 

In MAM, the membrane resonator is considered as a unit cell. In order to investigate 

its one dimensional bandgap property, two opposite edges of the resonator were applied 

with the Floquet boundary condition. By setting the wave vector scanning from 0 to π/L 

and plotting the eigen frequency of the model, the dispersion relation can be obtained. In 

addition, by setting the distance d to 8, 10 and 14mm, the shifting of the bandgap edges 

was obtained and presented in Figure 2.  

 
Figure 2. Band structure of the MAM with various distances between the attached 

masses 

 

According to the figure, it is found that when the distance between masses was 

increased, the location of bandgap would be shifted up. When the distance was increased 

from 8mm to 14mm, the bandgap location (lower edge) was changed from 214Hz to 

259Hz, which is a relatively significant change of location. In former studies of MAM, 

the main method used for adjusting the location of bandgap is by changing the external 

force applied to the membrane [14].  

To examine the mechanism of the bandgap formation, the mode shapes of the resonator 

with an infinite periodic structure are presented in Figure 3. In accordance to Figure 2, 

the bandgap is formed by the first order resonance, which is the out-of-plane vibration of 

the decorated mass. The periodicity can also generate a Bragg bandgap, but it is not taken 

into consideration in this work.  Furthermore, for the 1st resonant mode, the moving part 

of the unit cell is only the decorated masses and the centre region of the membrane, while 

the frame is mainly stationary.  However, in the 2nd resonant mode, the decorated masses 
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and the frame are both vibrating in the opposite direction, so the vibration will still be 

able to be transmitted to the target structure. 

 

 
Figure 3. Left: the 1st mode shape of membrane unit cell; Right: 2nd mode shape of the 

membrane unit cell. 

 

3.  VIBRATION TRANSMISSIBILITY ON A THIN PLATE 

To examine the vibration absorption performance of the aforementioned membrane 

resonator, a finite combination of 1 × 8 units of membrane resonators are constructed and 

attached to a thin aluminum plate. The size of the plate was set as: 600 × 100 × 2mm. 

For metamaterial, periodicity is not compulsory for its functioning. However, in order to 

compare with the band structure results in Section 2, a periodic combination of resonators 

is utilized.  

Figure 4 shows the configuration of the structure. The left edge of the plate is fixed, 

and prescribed displacement is set at the right edge of the plate as the incident excitation. 

A frequency domain scanning is then conducted and the response signal is picked up from 

Point A. For comparison, the frequency response of a bare plate is also included in this 

study.  

 
Figure 4. Configuration of a thin plate with membrane-type metamaterial array 

 

The results of frequency domain scanning are presented in Figure 5. Based on the 

figure, when the distance between each mass was increased, the resonant frequency would 

be shifted to the higher frequency range. By adjusting the distance from 8mm to 14mm, 

the bandgap was shifted from 214 – 220Hz to 259 – 264Hz, while the bandwidth is mainly 

unchanged at about 5 Hz. This is consistent with the bandgap analysis previously 

described and it demonstrates that the changing distance of decorated masses can be used 

to effectively tune the location of the bandgap. In accordance to the figure, the use of 



resonators has managed to reduce the vibration transmissibility of the thin plate by about 

40dB at most. It should be noted that the total mass of the resonators is about 41g, which 

is 12.65% of the weight of the plate.  

When the distance between the masses is 10mm, the obtained bandgap range is 226-

231Hz. If the incident wave is outside the bandgap range, the structural wave will 

propagate through the plate and resonators directly because it cannot excite the resonant 

mode of the resonators. However, when the incident wave is within the bandgap range, 

the first resonance mode will be excited. As aforementioned, for the first resonant mode, 

the decorated masses are in motion, while the frame mainly remains stationary. As a 

result, the vibration energy can be absorbed by the resonator cell so to minimize the 

vibration transmission in the plate.  

 
Figure 5. Frequency response of membrane resonators. The distance between 

decorated masses are defined as 8, 10 and 14mm, respectively. The dash-dotted line 

indicates the response of a bare aluminium plate. 

 

4.  CONCLUSIONS 

The vibration absorption performance of membrane-type metamaterial on a thin plate 

has been investigated in this work. For this investigation, the vibration mode shapes of 

the resonator are examined to investigate the mechanism of bandgap formation. It is found 

that by changing the allocation of masses decorated on the membrane, the resonance 

frequency of the membrane resonator can be tuned accordingly. Compared with the 

method of tuning the force applied to the membrane, this method can be easier to 

implement and more accurate results can be achieved during the fabrication process. In 

this simulation study, the results show that the change of distance of decorated masses 

from 8mm to 14mm can shift the bandgap from 214 – 220Hz to 259 – 264Hz. This can 

provide an alternative way of adjusting membrane-type metamaterial’s operation 

frequency. 
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