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ABSTRACT

We discuss the concept of Wigner transformation in the context of propagating
stochastic acoustic signals in the near- and farfield. The starting point is a statistical
description of the sound field in terms of spatial correlation functions. A phase space
approach based on Wigner functions is then adopted and the corresponding free
field propagator is introduced. Acoustic data are acquired in an experiment using
an ’acoustical camera’; the sound pressure emanating from a vibrating rectangular
plate is measured on a 32 × 32 microphone array in coincidence. Measurements
and simulations are compared at different heights above the source plane. It is
demonstrated that the Wigner function approach provides a stable tool to propagate
correlation data.
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1. INTRODUCTION

Modelling the propagation of sound from vibrating structures is of fundamental
importance in the context of sound radiation, Nearfield Acoustical Holography
(NAH) [1], and noise and vibration control [2]. To optimise the external sound field, it
is important to determine the wave amplitude distribution at source level as represented,

1gregor.tanner@nottingham.ac.uk

http://i-ince.org/files/data/classification.pdf 


for example, by the sound pressure level in a fluid near the surface of a vibrating built-up
structure [3]. The structure-borne sound distribution in the solid can then be deduced
from the pressure field in the fluid (or vice versa) by using the relations between the
(near-field) pressure and the vibrational modes of the structure [4]. Radiation from
both regular structures, such as rectangular plates and cylindrical or spherical bodies
(see [5] for an overview) and from arbitrarily shaped surfaces, see e.g. [6–9], have been
considered in detail. Sound pressure measurements in the very near-field, measured
either by intensity probes or by microphones and microphone arrays, have been described
in [10–12].

In this paper, we discuss the so-called Wigner function (WF) approach in the context
of noise radiation and NAH. We will in particular demonstrate that the WF approach
mitigates some of the problems in NAH [13] - such as blow-up of the back-propagated
field due to noise-induced evanescent contributions - in an elegant way. The WF
approach has its origin in quantum mechanics [14] and has more recently found
widespread attention in optics [15–17] and radio frequency (RF) radiation [18, 19]. The
WF formalism offers a direct route to pure ray-tracing approximations in an operator
implementation [18, 20], while still capturing in its exact formulation the full wave
dynamics. It is particularly powerful in the case of incoherent or noisy sources, allowing
a prediction of the radiated intensity even in the absence of full phase characterisation of
the source. The method exploits a connection between the spatial field-field correlation
function (CF) and the WF [21–23]. In [18], efficient propagation of CFs using ray
propagation in phase-space is demonstrated, an extension of the formalism to radiation in
confined space such as cavities is described in [20].

The routine use of microphone arrays in acoustic experiments, measuring sound
pressure at thousands of positions in parallel [12, 13], provides the ideal background
for spatial correlation measurements in the time domain - an important input and thus a
prerequisite for the WF approach. In particular, we propose here to propagate a statistical
quantity - the CF for noisy signals after suitable time averaging - directly and we will
demonstrate how this can be done efficiently using the WF approach. Noise contributions
are naturally suppressed here through time averaging and evanescent components can
be naturally filtered out avoiding blow-up problems in the back-propagation. We note
in passing that n-point measurements are challenging in the context of electromagnetic
radiation in the RF range for n > 2 [19,24,25], whereas the same is not true for acoustics
where microphone arrays can easily measure time-dependent acoustic fields for up to
1000 positions simultaneously.

The paper is structured as follows: In Sec. 2.1, we describe the experimental set-up for
measuring radiation off a rectangular plate with a 32×32 microphone array. In Sec. 3, we
present the basic theory of the WF approach considering radiation into free space from an
extended planar source. The experimental measurements are analysed with WF methods
in Sec. 4 and theoretical simulations are compared with experiments. In particular, the
potential of WF techniques for nearfield holography will be demonstrated. We show that
WF techniques are ideally suited (i) to filter out blow-up in the reconstructed source, and
(ii) to obtain source distributions without a priori knowledge of the plate geometry.

2. PROPAGATION OF SOUND FROM EXTENDED, STOCHASTIC SOURCES

Sound radiation from complex structures is often stochastic in nature due to the
complexity of the underlying stucture-borne sound field and broadband excitation



Figure 1: Power spectrum of the measured sound pressure at (x, y) = (0mm, 0mm), as a
function of frequency, with driving frequency f = 2034 Hz taken at a distances z = 5 mm
above the plate.

through incoherent force-loading conditions. A statistical description of the sound field
is then appropriate. The key objectives of this paper are to describe the propagation of
such statistical data - particularly the spatial correlation function (CF) - and to provide
interpretation of its spatial and directional distribution through the Wigner function (WF).

The feasibility of the approach is established by applying it to the measured data
obtained from the experimental set-up described in Sec. 2.1 and also in [12, 13].

2.2.1. Experimental set-up

A prerequisite for the analysis performed in this paper is the ability to measure sound
pressure field distributions simultaneously in time at different positions in space above
a source plane. While this still poses a considerable challenge in the radio frequency
range for radiation in an electromagnetic context (as outlined in [18, 19, 25]), in the
acoustic domain there are commercially available microphone arrays [26] which make
it possible to measure the sound amplitude at thousands of positions simultaneously.
Below we report the experimental setup for carrying out a sound recording measurement
above a vibrating simply-supported rectangular aluminium plate. We emphasise that
the measurements and analysis performed are appropriate to completely characterise
stochastic sources and do not rely on any pre-existing analysis of the source plate in
terms of eigenfunction expansions as suggested in [12, 13].

The experimental set-up is described in [12, 13]. Simply-supported boundary
conditions are obtained approximately by loosely clamping the plate in an aluminium
frame. The frame is at its inner sides equipped with thin cylindrical wires such that
rotation at the edges is possible. The width and length of the plate are Lx = 203mm and
Ly = 303mm, respectively. The thickness is h = 5mm. The plate is excited at the bottom
by a shaker of type BK-LDS V201 [27].

A Sorama CAM1K microphone array with 1024 microphones is positioned above
the plate [26]. The microphones are fixed on a 32 × 32 grid frame with equidistant
positions having an inner spacing of 20mm. The sample frequency of the microphone
array is 46.875 kHz. The data are gathered for 1s and saved for further processing
with Matlab c©. All measurements are performed in a semi-anechoic room. The distance



Figure 2: A mosaic representation of the 4-D correlation function in frequency
representation. The pressure fields are measured at a distance of z = 5mm.(Online version
in colour.)

between the microphones and the plate can be varied at discrete steps with heights zh =

5mm, 30mm and 50mm, measured from the top surface of the plate to the lower surface of
the microphones. The microphones are box-shaped of dimensions 4mm × 3mm × 2mm
and soldered to the grid points of the Sorama array.

A typical power spectrum of the pressure field at a fixed point, here in the middle of
the plate at (x, y) = (0mm,0mm), is shown in Fig. 1. The main features are peak responses
at multiple integer harmonics of the driving frequency f = 2034 Hz, that is, at f = 2034
Hz, 4068 Hz, 6102 Hz and 8136 Hz and are a consequence of the narrowband, periodic
driving mechanism. We would like to emphasise that the measurement and propagation
procedures described in this work apply also to more complex forcing mechanisms, see
[25]. Correlation measurements reported in the remainder of the paper are restricted to
these peak frequencies.

2.2.2. Characterisations of radiated fields using correlation functions

We will in the following consider sound radiation off a planar rectangular plate. The
sound pressure level is denoted φ (r, z; t) where r = (x, y) denote the coordinates in the
plane of the source and z measures the distance normal to the source. We choose −Lx/2 ≤
x ≤ Lx/2 and likewise −Ly/2 ≤ x ≤ Ly/2, where Lx, Ly are the dimensions of the plate..

The time-spatial correlation function is defined as

Cz (r1, r2; τ) = lim
T→∞

1
T

∫ T

0
φ (r1, z; t + τ) φ (r2, z; t) dt. (1)

In the frequency domain, this field-field CF is represented by the Fourier transform

Γz (r1, r2;ω) =

∫ ∞

−∞

e−iωτCz (r1, r2; τ) dτ. (2)

To visualise the four-dimensional CF Γ(r1, r2, ω) obtained from the measurement date
over the full range of accessible (r1, r2) values, we have chosen a mosaic representation
as displayed in Fig. 2, here at the excitation frequency 2034 Hz. We choose a grid of
coordinate points in the x2, y2 plane and then obtain the CF in terms of the variables x1, y1

for fixed x2, y2, see the LHS of Fig. 2. The driving frequency is close to the (2, 2) flexural
eigenmode of the plate, which has been measured to be at 1872 Hz [13] and which also
dominates the correlation pattern.



In the following we will consider Γ(r1, r2, ω), measured and predicted for frequency
values f0 = 2034 Hz and 4068 Hz at different heights above the source plane. For
the propagated correlation functions, the pressure fields measured at z = 5mm serve as
the input data for the correlation-function propagator described in the following section.
Note that for a rectangular plate ideal simply supported boundary conditions provide a
particularly simple description of the eigenmodes of the flexural dynamics in the form

wn,m(x, y) = Anm sin
[
nπ

(
x

Lx
+

1
2

)]
sin

[
mπ

(
y
Ly

+
1
2

)]
,

with (n,m) being positive integers.

3. PROPAGATION OF CORRELATION DATA IN PHASE SPACE

The propagation into free space of measured spatial correlations can be predicted
numerically by Fourier transforming to a representation of the data in terms of momentum
(or direction) variables. We emphasise in our analysis the Wigner function, which not only
allows efficient propagation of the data, but also provides a simple interpretation of this
propagation in terms of transport along rays in phase space.

3.3.1. Propagation in momentum and in phase space

We begin by transforming the CF to a momentum representation defined by

Γ̃z
(
p1,p2, ω

)
=

"
e−ikp1·r1Γz (r1, r2;ω) eikp2·r2dr1dr2, (3)

where k p is the wave vector component in the (x, y)–plane and k denotes the free-space
wavenumber. The propagation of Γ̃z in z direction can then be described as [18]

Γ̃z
(
p1,p2

)
= eik(z−z0)[T(p1)−T ∗(p2)] Γ̃z=z0

(
p1,p2

)
, (4)

where z0 denotes the source plane distance, here z0 = 5mm. We leave out the explicit ω
dependence for convenience. Furthermore, the normal component of the unit wave vector
is defined as ( [28], page 342)

T (p) =

{ √
1 − p2 for p2 ≤ 1

i
√

p2 − 1 for p2 > 1.
(5)

This applies both to evanescent (p2 > 1) and propagating (p2 ≤ 1) regimes. Joint
positional and directional information can be extracted from the CF through the WF
obtained from (4) by making the coordinate rotation

p = (p1 + p2)/2,
q = p1 − p2

(6)

and then taking an inverse Fourier transform in the displacement variable q

Wz (r,p) =

(
k

2π

)d ∫
eikr·q Γ̃z (p,q) dq , (7)

where r = (r1 + r2)/2, and d is the dimension of the transverse direction. We will focus
in what follows on full 3D simulations with r = (x, y) and thus d = 2.



Both the CF and WF representations of propagating and evanescent wave densities
have been studied extensively for a planar source in the context of electromagnetic waves
[18, 19, 25]. An explicit propagator for the WF can be obtained by taking the Wigner
transform, Eq. (7), of both the propagated and the source CF in (4) and writing formally
[18, 25]

Wz (r,p) = Wz=z0 (r,p) ∗r Gz(r,p), (8)

where ∗r indicates a convolution with respect to the variable r only and the WF propagator
in free space takes the form

Gz(r,p) =

(
k

2π

)d ∫
e−k(z−z0)(T (p+q/2)−T ∗(p−q/2)) eikq·r dq. (9)

The propagated correlation function can be retrieved by performing an inverse Fourier
transform of the WF with respect to p, which is defined as

Γz(r, s) =

(
k

2π

)d ∫
eikp·s Wz(r,p)dp, (10)

in which we use the rotated coordinates

r = (r1 + r2)/2,
s = r1 − r2

(11)

to label position pairs and we note that r and s are respectively conjugate to the rotated
momentum variables q and p in (6).

Equation (8) is an ideal starting point for short wavelength and deep near-field
approximations. The ray-tracing limit, along with higher-order corrections, emerges
naturally in the large k limit for propagating components, for which p2 < 1 [18]; one
obtains in leading order

Wz (r,p) ≈ Wz=z0

(
r −

(z − z0) p
T (p)

,p
)
, |p|2 < 1. (12)

Evanescent decay and an associated diffusion process dominate the small z/λ and p � 1
limit where λ = 2π/k is the wavelength [25]. We will not dwell on these approximate
approaches in what follows and will in general use the full propagator (8) providing
numerically exact results in the analysis section, Sec. 4.

4. RESULTS AND ANALYSIS OF THE MEASURED DATA

4.4.1. Correlation functions

The acoustic data are obtained by exciting a rectangular plate at the right upper
quarter of the plate with a shaker. The experiment was repeated at different heights
thus measuring sound as it is transported away from the plate. We will in the following
focus on results obtained for an excitation frequency of 2034 Hz. Following on
from the theoretical considerations in Sec. 3, we first construct the spatio-temporal
correlation function from the acoustic pressure data φ(r, t) measured at the microphone
position r = (x, y). The correlation function, Eq. (1), is obtained approximately from
measurements taken over a finite time interval T , that is,

C(r1, r2, τ) = 〈φ(r1, t)φ∗(r2, t − τ)〉 =
1
T

∫ T

0
φ(r1, t)φ∗(r2, t − τ) dt. (13)



Figure 3: CF at frequency f = 2034 Hz; results obtained from numerical computations
(1st row) are compared with the experimental data (2nd row) at different heights above
the plate with x2 = 9mm, y2 = 5mm, fixed.

For convenience, we use continuous variables (x, y, t) throughout, although it is
understood that both the spatial positions and the time are discretised in the measurements
themselves. On moving from the time domain to the frequency domain, we perform a
Fourier transform with respect to the time displacement τ in order to obtain the spatial
correlation function Γ(r1, r2, ω) as spelled out in Eq. (2). The intensity is obtained as

I(r, ω) = Γ(r, r, ω) =
〈
|φ̂(r, ω)|2

〉
. (14)

The CF in Fig. 3 is shown here as function of x1, y1 at fixed x2 = 9mm, y2 = 5mm for
f0 = 2034 Hz. We observe four prominent peaks in the CF indicating a strong contribution
from the (2, 2) eigenmmode of plate vibration. When moving from the measurement plane
at z0 = 5mm closest to the plate to z = 30mm and z = 50mm, one observes a broadening
of the peaks with increasing distance from the plate: this is predicted using the phase
space propagation method described in the previous section. The numerical (upper row)
and the experimental data (lower row) are in good agreement. Similar results are found
for the other dominant frequencies at 4068 Hz, 6102 Hz and 8136 Hz.

The intensity defined in (14) is shown in Fig. 4 for the frequency f = 4068Hz.
The top two rows display the intensity in the (x, y) - plane and show features similar
to the correlation data in Fig. 3. The bottom row in Fig. 4 displays the intensity along
the line y = 130mm. A comparison is made here between the measured CF (black
line), the numerically exact CF propagator, Eqn. (8) (green line) and the ray tracing (or
linear) approximation, Eqn. (12) (red line). One observes that the measured and exactly
propagated data agree well throughout. The linear approximation captures the overall
behaviour well, but does not agree when it comes to details such as the peak heights. This
behaviour can be observed for other cuts along fixed y both in regions with high and low
overall intensity.

4.4.2. Propagated Wigner functions

It is also instructive to consider the WF itself, in particular as it is possible to extract
dynamical information from this representation and thus to reach a better understanding
of the propagation mechanism.



Figure 4: Intensity at different distances above the plate at f = 4068 Hz. Top rows:
Intensity in the full x, y plane; bottom row: intensity along the line y = 130mm comparing
measured data (black/ dashed line) with numerically exact propagated data (green/ solid
line) and those obtained using the linear approximation (red/dotted line).



Figure 5: WF of the pressure fields in (x, px) space for fixed (y, py) = (0, 0) measured (top
row) and the WF obtained using the propagator (bottom row) for various heights above
the plate and at f = 2034 Hz.

In Fig. 5, the WF Wz(r,p) is plotted, here as a function of (x, px) while keeping y = 0,
py = 0 fixed. Again, a comparison between the propagated and measured WFs is shown
at f = 2034 Hz. The agreement is very good - not surprisingly after what has been
reported in the previous section. We also observe a ’shearing’ of the WF where the slope
or shearing angle increases with distance from the source. The shearing can be interpreted
in terms of a ray-dynamics: waves or rays with px = 0 leave in a direction normal to the
plate, rays with px ≈ ±1 emanate tangentially to the plate. When moving the detection
plane away from the source, rays with larger absolute values of px will travel further in
the x direction, see Eq. (12). When projected onto the spatial representation, this shearing
leads to the observed widening of the correlation peaks in Fig. 3.

Note that due to the wavenumber scaling chosen in, for example, Eqn. (7), px and
py larger than 1 in absolute values can be identified with evanescent waves leading
to exponential decay in z direction. From the WF shown in Fig. 5, we conclude that
evanescent waves are not present even in the near field and that propagating contributions
related to the range −1 < px < 1 dominate; (note that the wavelength in air is roughly
15 cm at 2 kHz, so all measurements are done in the near-field). This indicates, that the
shaker does not significantly excite evanescent components at the frequencies considered.

5. CONCLUSIONS

We have demonstrated the feasibility of using Wigner functions to predict and interpret
the evolution of statistically characterised acoustic fields as one moves away from the
source. In particular, the measurements of the pressure fields near the source by the
microphone array has been demonstrated to provide enough spatial resolution to serve as
input for a detailed numerical predictions of intensities and spatial correlation functions
away from the source. Although the particular driving mechanism used in the experiment
can be understood using coherent models of the field amplitudes themselves [12], we
emphasise that the theoretical approach outlined in this paper applies equally to scenarios



where the source is completely stochastic and characterised only through statistical
properties such as (time-averaged) correlation functions.
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