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ABSTRACT 
Wedge brakes enlighten new concepts of automotive braking systems because large 
friction braking force can be generated by small actuation force. A dynamic model 
with time-delayed feedback is built for the wedge braking system. The multiscale 
method is adopted to obtain the analytical solution of the primary resonance 
response. The Routh-Hurwitz criterion is used to analysis the stability. The 
influences of time delay, wedge angle and system stiffness on the dynamic response 
and stability are examined. The analytical solution is verified by the numerical 
solution. The analytical results show that the amplitude of the stable state and the 
stability boundary periodically varies along with the time delay. Within one period, 
large time delay induces saddle-node bifurcation and leads to instability. Moreover, 
larger wedge angle and larger stiffness significantly increase the amplitude of the 
stable state, and expand the instable region. The method and results provide 
reference for design and control of wedge-based braking systems. 
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1. INTRODUCTION 

Compared with the conventional brake, the wedge brake utilizes the self-
energizing characteristic[1] of the wedge to produce enough braking torque with a small 
actuation force. Thus, the size and losses of the actuation motor can be reduced[2-4]. 
Research on traditional brakes shows that the friction braking system may have chattering 
and squeal noise, which seriously affects the braking process and service life[5, 6]. During 
the braking process, the friction state of friction interface transitions from sliding to 
sticking. Since the produced friction is asymmetric due to the self-energizing ratio is 
related to the direction of relative velocity, the dynamic response at the stick-slip events 
exhibits a asymmetry characteristic[7]. Moreover, the inevitable time delay in braking 
torque control and application, such as signal transmission delay and actuator delay, also 
has a complex impact on the dynamics of the braking system, thus, the mechanism needs 
to be further studied. 
  

Until now the research on dynamics of the wedge braking system has never 
considered the time-delay effect[8-11]. Studies on general nonlinear dynamic systems 



 

 

have shown that time delay may cause bifurcation, and lead to instability[12, 13]. 
Applying the nonlinear method to solve the problem is convenient for analyzing the 
dynamic response. Yaman[14] et al. studied the effect of feedback gain and time delay 
on the steady state resonance response of nonlinear cantilever beam by using multiscale 
method. Chatterjee[15] et al. built and solved the time-delay dynamic model of friction-
induced vibration by using KBM asymptotic method, and carried out the stability analysis. 
Zhao[16] et al. applied perturbation method to analyze amplitude-frequency response and 
stability of time-delay dynamic vibration absorber. Sun[17] et al. analyzed the influence 
of system control gain and time delay on the saturation control damping band, and 
proposed a method to improve the performance of the dynamic vibration absorber based 
on these results. Saha[18] et al. applied the multiscale method to solve the time-delay 
dynamic model of the belt-spring-mass system with LuGre friction model, and obtained 
the bifurcation characteristics of the system. Referring to these papers, we use the 
multiscale method to solve the dynamic response of the wedge-type braking system near 
the stick-slip events under time delay effect, and further analyze its stability and dynamic 
behaviour. 

For the friction-induced dynamic problem, the traditional Coulomb friction model 
is discontinuous and non-differentiable at zero relative velocity, which brings difficulties 
to modelling and solving process. According to the type of friction model, the literature 
on the dynamic analysis of the wedge braking system can be divided into two categories, 
one of which only considers the cases that the direction of relative velocity on the friction 
interface keep positive or negative, avoiding the problem of discontinuity. Hwang[19], 
Roberts[20] and Mahmoud[21] respectively studied the impact of brake pressure, the 
motor voltage, wedge angle, etc. on the dynamic response under unidirection friction. The 
other type of studies utilizes the smooth function to fit the discontinuous friction model. 
Balogh[22] et al. designed a S-type function(Sigmoid) to fit the Coulomb friction model 
and calculated the pressure, displacement and friction generated by the wedge control 
system under different control inputs. Li et al. designed hyperbolic tangent smooth 
function, and used this model calculate the dynamic response under different wedge angle 
and feedback control gain. This smoothing model is also applied to other friction-induced 
dynamics problem[23, 24]. However, the existing smooth functions usually contain 
complex function such as exponential and hyperbolic tangent, which can be applied to 
numerical calculation but require further simplification to be applicable to analytical 
calculation.  

This paper established the nonlinear time-delay model of wedge braking system, 
the friction model was established by using a combination of smoothing function and 
polynomial fitting method. Then the multiscale method is applied to obtain the analytical 
solution, and the Routh-Hurwitz criterion is adopted to analyze the stability boundary. 
The impact of time delay, system stiffness and wedge angle on the amplitude-frequency 
curve is discussed based on the analytical solution. 
 
2.  DYNAMICS MODEL WITH TIME DELAY 
 
2.1 Wedge brake governing equation 

The working principle of wedge brake is shown in Fig.1[7], the motor pushes the 
wedge in contact with the brake disc, generating friction force on the friction interface, 
thus, the brake disc gradually stop rotating. 



 

 

            

（a）Brake actuation principle        （b）equilibrium condition of forces 

Fig.1 Working principle of wedge brake 

The dynamic equation of brake disc affected by the wedge can be expressed as 
 ( ) ( ) ( ) ( ) ( )J t c t k t RF t T tµθ θ θ τ+ + + − =    (1) 

Where NF 、 rF  are the normal pressure on the wedge， aF is the action force of 
the driveline， Fµ is the friction force on the friction interface， wα is the wedge angle, 
J 、 c 、 k  are the moment of inertia 、 damping and stiffness of the driveline 
respectively, R is the equivalent radius of the friction force，T  is the external torque 
with amplitude is eT  and frequency is ef . 
 ( ) ( )coseT t T t= Ω   (2) 

 =2 efπΩ   (3) 

2.2 Friction model 
Applying the Coulomb friction model, the friction coefficient can be expressed as 

 ( ) ( )
[ ]

sign        0
           0

k

s s

v v
v

v
µ

µ
µ µ

 ≠=  − =
  (4) 

Where kµ  is kinetic friction coefficient and sµ is static friction coefficient. The 
relative sliding speed on the friction interface is calculated by the angular velocity of the 
brake disc. 
 v Rθ=    (5) 

The positive pressure of wedge satisfies the following equations. 
 ( ) ( )tana N wF F Fµ α+ =   (6) 

 ( )0 absa aF F vδ= +   (7) 

 ( )= NF v Fµ µ   (8) 

Where δ  is the slope of aF , and 0aF  is the initial value of aF . From (4), (6), (7), 
(8), the friction on the friction interface can be derived as 
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Where the case of ( )tan w sα µ<  is not discussed in this paper because it will lead 
to instability in the wedge mechanism design. 

However, the friction of (9) is discontinuous, thus, a smoothened model[25] is 
adopted to deal with it. 

 ( ) ( ) ( )abs1 1 tanhvs
k

k

v e vζµ
µ ξ µ

µ
−  

′ = + −     
  (10) 

Where ζ  and ξ  are tuning parameters, given 15ζ =  and 30ξ = . The result of 
fitting the smoothened model to the Coulomb friction model is shown in Fig.2(a). 

It is noted that the smoothened model of equation (10) contains an exponential 
function and a hyperbolic function, which is inconvenient for the derivation of the 
nonlinear analytical method. This paper focuses on the dynamic response near the stick-
slip events (ie, the relative velocity of the friction interface is small), in which the friction 
model can be fitted with a cubic polynomial, the expression is as follows and the fitting 
results are shown in Fig.2(b). 
 ( ) 2 3v vv vβ γµ α λ+′ +′ +=   (11) 

Thus, the friction in (9) can be expressed as: 
 ( ) ( ) ( )( )tan( )a wF v F v vµ µ α µ= −   (12) 

The ratio of friction Fµ  to driving force aF  reflects the "self-energizing" effect 
and the asymmetry characteristic of the wedge, which is shown in Fig.2(c), given 

0.34wα = , 0.3kµ = , 0.33sµ = , 250aF N= . 
The time delay of motor and actuator is introduced as a variable to describe the 

delay effect, thus, ( )= tτθ θ τ− , ( )F F tµ µ τ= − , ( )a aF F t τ= − . Substituting /c Jµ = , 
2 /k Jω = , we obtain the normalized model 

 ( ) ( )2 2 3R J T t Jτ τ τβ γ λθ µθ ω θ αθ θ θ+ + + =+ + +       (13) 

  
      （a）Coulomb model and smoothened model                         （b）Smoothened model and its polynomial fitting 

-20 -10 0 10 20

v (m/s)

-0.4

-0.2

0

0.2

0.4

F
/F

a

smoothened model

Coulomb model

-3 -2 -1 0 1 2 3

v (m/s)

-0.4

-0.2

0

0.2

0.4

smoothened model

polynomial fitting



 

 

 
（c）Characteristics of friction force on the wedge 

Fig.2 modeling of the friction force on the wedge 

3. FORCED PRIMARY RESONANCE ANALYSIS 
 
3.1 Multiscale method 

For convenience, substituting 
 2

Rx
J
λθ
ω

= +   (14) 

Thus, 2/x R Jτ τθ λ ω= + .  Substituting (14) into (13) and introducing a small 
parameter ε (0<ε <1), the equation (13) can be transformed as a small perturbation model. 
 ( )( )2 2 3cosex x T t x x x xτ τ τω ε α β γ µ+ = Ω + + + −       (15) 

Introducing two different time scales, 0 1,T t T tε= = , and a partial derivative 
operator  
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2
2
0 0 12

d
d

d 2
d
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D D D
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= + +

= + +
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  (16) 

Substituting Eq. (16) in (15), and separating the terms which have the same 
exponential of ε , the following equation can be derived. 
 2 2

0 0 0 0 0D x xω+ =   (17) 

 ( )2 2 2 3
0 1 1 0 1 0 0 02 coseD x x D D x D x x x x T tτ τ τω µ α β γ+ = − − + + + + Ω     (18) 

The approximate solution of Eq.(17) can be expressed as follows 
 ( ) 0

0 0 1 1, ( ) i Tx T T A T e ccω
τ= +   (19) 

Where cc  is the complex conjugate of the previous term. The external excitation 
term and the time delay term can be expressed as follows 

 ( ) 0
1cos
2

i T
e eT t T e ccΩΩ = +   (20) 

 ( ) ( )0
1= i Tx A T e ccω τ

τ τ
− +   (21) 
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In order to obtain the first order approximate solution ( )1 0 1,x T T , we substituting 
the Eq.(19)、(20)、(21) in (18) at first.  

 

( ) ( ) ( )
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  (22) 

A tuning parameter σ  is introduced to describe the deviation between excitation 
frequency and natural frequency. 
 = +ω εσΩ   (23) 

To eliminate the secular term，we set the sum of the coefficient with 0i Te ω
 in it’s 

term equal to 0： 

 ( ) ( ) 1 3 2
1 1 1

12 3 0
2

i T i i
ei D A T i A T T e i Ae i A Aeσ ωτ ωτω µ ω α ω γ ω− −− − + + + =   (24) 

The amplitude can be expressed in polar form as 

 ( ) ( ) ( )1
1 1

1
2

i TA T a T e η=   (25) 

Substituting 1= Tϕ σ η−  and Eq. (25) in (24), and separating the imaginary parts 
and real parts, we can obtain the following equation. 

 ( ) ( ) ( )' 3 2
1

1 1 3 1cos cos sin
2 2 8 2 ea a a a T Tµ α ωτ γ ω ωτ σ η

ω
= − + + + −   (26) 

 ( ) ( ) ( )' 3 2
1

1 3 1sin sin cos
2 8 2 ea a a a T Tϕ σ α ωτ γ ω ωτ σ η

ω
= + + + −   (27) 

 
3.2 Amplitude-frequency response equation 

Substituting the right side of Eq. (26) and (27) with zero, we can obtain the 
amplitude and phase of steady state solution. 

 ( ) ( ) ( )3 21 1 1 3sin cos cos
2 2 2 8eT a a aϕ µ α ωτ γ ω ωτ
ω

= − −   (28) 

 ( ) ( ) ( )3 21 1 3cos sin sin
2 2 8eT a a aϕ σ α ωτ γ ω ωτ
ω

= − − −   (29) 

To eliminate the variable ϕ , calculate the quadratic sum of Eq.(28) and (29), and 
the amplitude-frequency response equation is derived as 

( ) ( )

( ) ( )

22
3 2

2

2
3 2

1 1 3cos cos
4 2 2 8

1 3sin sin
2 8

eT a a a
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 

 + − − − 
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  (30) 



 

 

3.3 Stability analysis 
Substituting ( ) ( )' '

1 2, , ,a f a f aϕ ϕ ϕ= =  in Eq.(26) and (27), the Frechet 
derivative of which is given by 

 ( )
1 1

'

2 2

f f
a

F x
f f
a

ϕ

ϕ

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

  (31) 

where 

 ( ) ( )2 21 1 1 9cos cos
2 2 8

f a
a

µ α ωτ γ ω ωτ∂
= − + +

∂
  (32) 

 ( ) ( )3 21 1 3sin sin
2 8

f a a aσ α ωτ γ ω ωτ
ϕ
∂

= − − −
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  (33) 

 ( ) ( )2 22 1 1 9sin sin
2 8

f a
a a

σ α ωτ γ ω ωτ∂  = − + ∂  
  (34) 

 ( ) ( )2 22 1 1 3cos cos
2 2 8

f aµ α ωτ γ ω ωτ
ϕ
∂

= − + +
∂

  (35) 

For convenience, we substituting these terms as  

 1 1 2 2, , ,f f f fA B C D
a aϕ ϕ
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

  (36) 

The characteristic equation corresponding to the differential equations is given by 
 ( )2 =0A D AD BCλ λ+ + + −   (37) 

Where λ  is the eigenvalue of the equation. From the Eq.(37), we can obtain the 
sum of two roots is ( )A D− + , which is related to friction coefficient, time delay, natural 
frequency, wedge angle, etc. According to Routh-Hurwitz criterion, if 0A D+ >  and 

0AD BC− > , the steady state solution is stable, and there is no frequency hopping in the 
system. If =0AD BC− , the system is in stability boundary condition, which will generate 
saddle-node bifurcation and the amplitude-frequency response curve will appear unstable 
region 
 
4.  RESULTS ANALYSIS 

Parameters are selected as follows: c =1Nms/rad, J =1kgm2, k =10000Nm/rad, eT
=150N, R =0.2m,δ =0. The results of multiscale method are analyzed in this section. The 
amplitude-frequency response curve and stability vary with different time delay, wedge 
angle and stiffness of the driveline is discussed. Finally, the analytical solution and 
numerical solution are compared to validate the calculation. 
 
4.1 Influence of time delay on amplitude-frequency response curve 

According to Eq.(30) we can obtain amplitude-frequency response curves vary 
with different time delay, which is shown in Fig.3. 



 

 

 

Fig.3 Amplitude-frequency response under different time delay 

We observe from Fig.3 that with the increase the time delay τ , when 0< τ
<0.005πs, the primary resonance frequency and amplitude increase continuously, and the 
multi-stable solution begins to appear. The hard stiffness characteristic of the system is 
more obvious, which is due to the cubic term in the model. When 0.005πs<τ <0.01πs, 
the primary resonance frequency and amplitude decrease continuously. When 0.01πs<τ
<0.015πs, the primary resonance curve begin to bend to the other side and the soft 
stiffness characteristic is more obvious. In this case, the cubic term is also the expansion 
term of the friction force, so there is a time delay in the cubic term, and the value of the 
time delay will affect the soft and hard characteristics of the system. 

To further analyze the influence of time delay on amplitude-frequency response 
curve, the system amplitude - delay response and stability boundary are given in Fig.4 
and Fig.5. 

 

（a）σ = 0                  （b）σ = 0.25                  （c）σ = 0.5                                          

Fig.4 System amplitude - delay response 

As can be seen in Fig.4(a) and (b) ,  when σ=0 and σ=0.25, the primary resonance 
amplitude shows a periodic variation. The primary resonance amplitude decreases in 
some time delay interval, indicating that it can be reduced by controlling time delay. 
When σ=0.5, the primary resonance amplitude has multiple solutions, that is, the 
amplitude has a hopping phenomenon. 

The amplitude-frequency response curve can be obtained according to Eq.(30) and 
stability boundary,  which is shown in Fig.5. 
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  （a）τ = 0.0134s,α = 0.34                     （b）τ = 0.015s,α = 0.34 

Fig.5 The effect of time delay on stability 

The solid red line in Fig.5 is stability boundary, the inner part of which is unstable 
region while the outer part is stable. The intersection of two curves(SN) is saddle-node 
bifurcation point, and the braking process in this area is prone to chatter. When =0τ , the 
system is in a stable region. When 0<τ <0.005πs, with the increase of time delay, the 
unstable region curve also expands. The amplitude-frequency response curve and stability 
boundary begin to intersect at =0.0134sτ . There is only one stable solution to the system 
on the left side of saddle-node bifurcation point while three on the right side, of which 
the upper solution branch and the lower solution branch are both stable solutions, while 
the solution in the middle intersecting unstable region is unstable. When 0.005π<τ
<0.01πs, with the increase of time delay, the unstable region of the system decreases and 
the stability factor increases. We can also conclude that the primary resonance amplitude 
can be reduced and the unstable region can be eliminated by controlling time delay. 
 
4.2 Influence of wedge angle on amplitude-frequency response curve 

Wedge angle is a significant parameter in the wedge mechanism design. Improper 
selection of angle will cause the required restoring force is too large, and even the wedge 
cannot be returned smoothly, so that the car is always in a braking state. The influence of 
wedge angle on amplitude-frequency response curve is shown in Fig.6. 

 

  （a）τ = 0.01s                        （b）τ = 0.015s 

Fig.6 Amplitude-frequency response at different wedge angles 

We can observe from Fig.6 that wedge angle and the amplitude-frequency 
response curve is closely related. When time delay is relatively small, the primary 
resonance amplitude increase slightly with the increase of wedge angle 𝛼𝛼𝑤𝑤 . With the 
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increase of time delay, the unstable region become larger, which indicates that the primary 
resonance amplitude and the system stability can be controlled within the acceptable 
range by appropriately reducing the wedge Angle. 
4.3 Influence of system stiffness on amplitude-frequency response curve 

Wedge braking system stiffness can affect the natural frequency, so that the forced 
vibration will also be impacted. The relationship between system stiffness and amplitude 
frequency response curve is shown in Fig.7. 

  

   （a）τ = 0.01s,α = 0.34                   （b）τ = 0.014s,α = 0.34 

Fig.7 The effect of system stiffness on stability 

As can be seen in Fig.7, with the increase of the system stiffness, the primary 
resonance amplitude also increases, and this change is amplified with the increase of time 
delay. In some cases(e.g. Fig.7(b)), the amplitude-frequency response curve appears 
unstable solution branch, and the unstable region expands with the increase of system 
stiffness, which should be avoided when designing wedge brake. 
 
4.4 Comparison between numerical solution and analytical solution 

The correctness of analytical solution can be verified by comparing with 
numerical solution based on Eq.(1). When τ = 0.01s , and the external excitation 
frequency is equal to natural frequency, the analytical in time domain can be derived as 
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6 32
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εβω τ ϕ

εβ εγωω τ ϕ ω τ ϕ

= − + +

+ − + − − +
  (38) 

The comparison between the numerical solution and the analytical solution in 
steady state is shown in Fig. 9, which shows that they are basically consistent. 
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Fig.8 Comparison between numerical solution and analytical solution(τ = 0.01s, ,σ = 0) 

When σ ≠ 0, the following two cases are chosen to compared with amplitude-
frequency response curve in Fig.9. 

 

  （a）τ = 0s,σ = 0.25                 （b）τ = 0.015s,σ = 0.25 

Fig.9 Numerical solution of two different working conditions 

Comparing the steady state amplitude in Fig.3 and Fig9, we can find that the 
numerical solution and analytical solution are basically consistent. With the increase of 
time delay, the primary resonance amplitude and unstable region also increases. Thus, the 
time delay of actuator should be controlled to increase the stability of the system while 
designing wedge brake.  
 
5.  CONCLUSION 

To analyze the influence of different system parameter and control parameter on 
braking process of wedge brake, we simplified the friction model based on the Coulomb 
friction model and smooth function. Then a dynamic model with time-delayed feedback 
is built for the wedge braking system based on the existing dynamic model. The 
multiscale method is adopt to obtain the analytical solution of the primary resonance 
response. The analysis based on the analytical solution show that 

1) The cubic term in the governing equation which contains time delay will change 
the soft or hard characteristics of the response curve. The steady-state amplitude and 
stability boundary will change periodically at any time. Both the steady state amplitude 
and the stability boundary have periodic changes vary with time delay. A large time delay 
in one period will cause the saddle-node bifurcation and unstable solution branch, and 
finally result in frequency hopping and hysteresis phenomenon.  

2) The increase of wedge angle and system stiffness will increase the primary 
resonance amplitude and expand the unstable region. It can be seen from the results that 
the parameters such as time delay, wedge angle and system stiffness have a strong 
influence on the amplitude and stability of the wedge braking system. By appropriately 
selecting these parameters, the amplitude can be reduced and the stability can be increased. 
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