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ABSTRACT

Acoustic meta-surfaces are periodic structures commonly realised using sub-
wavelength sized resonators. One of their possible applications is in noise control
where they can be applied to create very compact sound absorbers. Numerical
modelling and characterization of meta-surfaces require the inclusion of acoustic
viscous and thermal dissipation effects. Several variations of numerical methods
are available that include such losses, each having different computational benefits
and limitations. In this work, numerical methods that incorporate dissipation are
applied to study the normal absorbing properties of several meta-surface designs.
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The results will be used to both benchmark the different numerical methods, but
also to extract data for simplified fluid equivalent models that can be used as input
for large-scale simulations including meta-surfaces.
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INTRODUCTION

In recent years, acoustic meta-surfaces have gained attention due to their potential to
absorb low-frequency sound waves while having an effective size much smaller than the
wavelength [1]. Meta-surfaces are usually realized using periodically organized acoustic
sub-wavelength resonators, such as Helmholtz resonators [2, 3] or more exotic shaped
resonators [4].

Modeling of meta-surface requires the inclusion of viscothermal effects. Existing
theory for acoustic wave propagation in uniform tubes of arbitrary cross-section shape [5]
can be used to characterize simple acoustic meta-surface absorbers by means of a fluid
equivalent model. In this approach, the viscous and thermal losses of the meta-surface
are taken into account by means of its complex dynamic density and bulk modulus on
a macroscopic scale [6]. These models can thus be easily incorporated in large-scale
numerical simulations by describing the meta-surface as an equivalent fluid in terms of
these effective properties. Unfortunately, the fluid equivalent approach presents some
limitations, especially for the analysis of more complex geometries. In fact, in many cases
it is desirable to improve the compactness of a meta-surface by introducing more design
freedom, thus making the use of this approach inadequate. In such cases, numerical
methods that include losses are necessary to accurately characterize and optimize the
performance of meta-surfaces. Both the Finite Element Method (FEM) and the Boundary
Element Method (BEM) can incorporate such losses, each having their strengths and
drawbacks.

Some authors have proposed models based on the FEM [7–11] and the BEM [12–14]
which rely on the Full-Linearized Navier Stokes (FLNS) formulation to capture both
viscous and thermal dissipation effects in narrow geometries. Until recently, these
implementations were unfeasible due to the high computational cost associated with
high-density meshes necessary to appropriately resolve the viscous and thermal boundary
layers. Nevertheless, the high development of computers over the past decades has paved
the way for the use of such implementations in more acoustic problems each passing
day. Some examples of the use of FLNS-based models for the acoustic characterization
of metamaterials can be found in [15, 16]. In these works, the importance of accounting
for the visco-thermal dissipation effects when analysing the acoustic wave propagation
through double-negative acoustic metamaterials is shown. As opposed to the fluid
equivalent approach, these numerical models are generic and can handle any arbitrary
geometry. In most cases, it may not only result in a much more accurate approach
to characterize complex meta-surface absorbers but also serve to explain the acoustic
behaviour thereof. On the other hand, numerical models could also be used to cross-check
the adequacy of using a fluid equivalent model to study a specific structure.

In this work, three test cases based on unconventional shaped Helmholtz resonators are
studied, and their frequency dependent absorbing capabilities are obtained by numerical
methods. The test cases chosen represent configurations that might be difficult to model
with analytical methods. The focus will mainly be on two BEM implementations, namely



a full method relying on the Kirchhoff decomposition (KD-BEM) and an approximate
method using the boundary layer impedance (BLI-BEM) method. Additionally, FLNS-
FEM simulations will be included for comparison. The test cases will mainly serve as
benchmarks to study the different numerical implementations with acoustic viscothermal
losses.

NUMERICAL METHODS WITH LOSSES

In this section and subsections, we will present the theory behind three different
numerical methods that are used to include the effect of viscous and thermal losses into
acoustic simulations.

FEM based on the full linearized Navier-Stokes formulation

Acoustic viscous and thermal dissipation can be included in the FEM by discretization
of the time-harmonic Full Linearized Navier-Stokes (FLNS) equations, that is, the
conservation of mass, energy and momentum equations, given by

iωρ + ρ0∇ · ~v = 0, (1)

iωρ0CpT − λ∆T − iωp = 0 (2)

iωρ0~v = −∇p +

(
µB +

4
3
µ

)
∇(∇ · ~v) − µ∇ × ∇ × ~v, (3)

respectively. In Equations 1-3, the acoustic variables are the pressure p, the temperature
T , the velocity ~v and the density ρ. Additionally, the fluid properties are expressed from
ρ0, Cp, λ, µB and µ which are the static density, the specific heat at constant pressure, the
thermal conductivity, the bulk viscosity, and the shear viscosity, respectively. Finally,
the frequency of oscillation is determined by the angular frequency ω. Several strategies
exist to discretize the FLNS [7–11]. Perhaps, the most common approach is to eliminate
the density variations by substitution of the ideal gas law into Equation 1 leaving three
equations having pressure, temperature, and velocity as the unknown variables [11, 17].
Simulations in the following rely on the implementation of the FLNS found in the
commercial software COMSOL Multiphysics. It is reasonable to assume that the
heat capacity of the boundary Γ in most cases is much larger than air, as a result, the
temperature fluctuations at the boundary can be considered as an isothermal process, so

T ≈ 0 on Γ. (4)

Additionally, the air molecules closest to a boundary will tend to stick to the boundary
resulting in a no-slip condition of the velocity, with

~v = ~vb on Γ, (5)

where ~vb is the boundary velocity. As a consequence of the boundary conditions in
Equations 4-5, so-called thermal and viscous boundary layers will form, creating a
transition region close to the boundary where the acoustic temperature and velocity



fluctuations change rapidly. In general, if air is considered the medium of propagation,
the thickness of the thermal and viscous boundary layers are of similar size, ranging
from millimeters to micro-meters in the audible frequency range. When performing FEM
simulations based on the FLNS it is necessary to create special boundary layer meshes
that can capture the acoustic behavior in the boundary layer region.

BEM based on the Kirchhoff decomposition

Applying the BEM directly to the FLNS equations is not straightforward. Hence,
it is convenient to manipulate the FLNS into a form more suitable for the BEM.
Therefore, previous boundary element implementations rely on the so-called Kirchhoff

decomposition, where the fundamental equations are split into an acoustic, thermal and
viscous mode given by pa, ph and ~vv, respectively. Each of the modes is described
independently by the Helmholtz equations [18]

∆pa + k2
a pa = 0, (6)

∆ph + k2
h ph = 0, (7)

∆~vv + k2
v~vv = ~0 with ∇ · ~vv = 0 (8)

in the domain, and only couples at the boundary through the coupling conditions

T = τa pa + τh ph ≈ 0 on Γ, (9)
~vb = φa∇pa + φh ph + ~vv on Γ, (10)

where ka, kh, and kv are the acoustic, thermal and viscous wavenumbers, respectively,
and τa, τh, φa and φh are complex and frequency dependent coupling constants. While
Equation 6 behaves similarly to the isentropic Helmholtz equation, the thermal pressure
and viscous velocity in Equations 7-8 are rapidly decaying in the vicinity of boundaries
and act more like diffusion equations. Equations 6-8 are discretized using collocation
BEM with continuous quadratic elements and coupled following the approach found in
Ref. [13] and adapted to two-dimensions in Ref. [19]. Previous implementations of the
BEM are directly based on the work by Bruneau et al. [18]. In their work, the acoustic and
thermal wavenumbers are developed using a second-order Taylor expansion. However,
the expansion is, in general, unnecessary and the full expression can be used without any
additional computational cost. It should be noted, that comparative studies between the
Taylor expanded and full wavenumbers has shown no significant differences. However,
for completeness we will in this work use the full expressions of the wavenumbers,
expressed as

k2
a =

2
(
ω
c

)2

X + R
and k2

h =
2
(
ω
c

)2

X − R
, (11)

with

X = 1 + (lv + γ)lh
1
c

(iω), (12)

R =

(
1 + 2

[
lv − (2 − γ)lh

] 1
c

(iω) + (lv − γlh)2 1
c2 (iω)2

)1/2

(13)



where γ is the ratio of specific heats, c is the speed of sound in air, lv is the viscous
characteristic length and lh is the thermal characteristic length. The two characteristic
lengths are defined by

lv =

4
3µ + µB

ρ0c
and lh =

λ

ρ0cCp
. (14)

One of the benefits of the KD-BEM (Kirchhoff Decomposition-BEM) is that boundary
layer meshing is avoided. On the other hand, the system is solved using several Shur
complement styled operations and the acoustic BEM matrices arising from Equation 6
are dense.

BEM based on the boundary layer impedance method

A simpler alternative to the KD-BEM is the implementation of the BEM together with
a Boundary Layer Impedance (BLI). Indeed, for this implementation only the classic
Helmholtz equation needs to be solved, accounting for the linear acoustic behaviour of
the system. The governing equation can thus be written as

∆p + k2
0 p = 0 (15)

where k0 is the isentropic wavenumber. The effect of possible thermal and viscous losses
occurring along the boundaries of the discretized propagation domain is accounted for by
imposing a special boundary condition. Although several possibilities can be found in the
literature, such as in the work by Bossart et al. [20] or Schmidt and Thöns-Zueva [21],
the authors here use the Wentzel-type boundary condition suggested by Nijhof [22] and
Berggren et al. [23], with the form

−δv
i − 1

2
∆T p + δT k2

0
(i − 1)(γ − 1)

2
p +

∂p
∂n

= 0 (16)

In Equation 16, n is the boundary normal component and ∆T represents the sum of the
second order spatial derivatives in the tangent directions, δv, and δT are, respectively, the
viscous and thermal acoustic boundary-layer thicknesses, which can be defined as

δv =

√
2ν
ω

and δt =

√
2λ

ωρ0Cp
. (17)

ν being the kinematic viscosity of air. To obtain the results presented throughout
this paper, the BEM was implemented using quadratic discontinuous elements (i.e.
with 3 internal nodes per element), which allows a simple evaluation of second-order
spatial derivatives required in Equation 16. While the method offers a computational
complexity similar to the isentropic wave equation, care must be taken when the
geometric dimensions are small and the boundary layers might overlap [23].

TEST CASES

In the following, three study cases are tested. In each case, we want to observe the
effect of viscothermal dissipations on the normal incident sound absorption coefficient.
Narrow sections are therefore introduced for different configurations. The walls are
considered as rigid, and an acoustic excitation is imposed with an incident plane wave
on one side. The pressure field is then calculated with the previous models.



Test case 1

The first test case is the oblique narrow section presented in Figure 1. In 2D the narrow
section represents a slit. The pressure field could be described with a fluid model and
equivalent properties given by Stinson [5] or Johnson-Champoux-Allard [6] approach .
The interest here is, therefore, to compare the FLNS and BEM models on a simple well-
known geometry, and eventually with a simpler equivalent fluid model.

X

Y

Z

Incident plane wave
1mm

10mm 30mm
 

30mm

30mm
45° 

Figure 1: Test case 1

Test case 2

The second test case is a narrow section with an intermediate expansion chamber
as presented in Figure 2. The expansion chamber has a uniform section and could be
described as a dead-end pore in a fluid equivalent model, even though some modeling
difficulties would arose in the intersections. The interest here is to see the convergence
of the BEM models compared to the FLNS model with that additional geometrical
complexity.
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Figure 2: Test case 2



Test case 3

The third test case is a narrow section with an intermediate expansion chamber as
presented in Figure 3. Contrary to the previous case, the section of the expansion chamber
is not uniform but varies linearly. In this case, though possible, it is more difficult to
describe the pressure field with an equivalent fluid. It is however very interesting to
compare the FLNS and the BEM results in this non-standard case. These results could
also be used to identify the equivalent fluid properties of such geometry with an inverse
method [24].
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Figure 3: Test case 3

NUMERICAL SIMULATION RESULTS

To evaluate the performance of the two BEM implementations, the sound absorption
coefficients in the three test cases are calculated and compared against FLNS-FEM
simulations. The FEM calculations are conducted using a system of equations having
approximately 2 million degrees of freedom, and a boundary layer mesh with 10 elements
in the boundary normal direction. The BEM implementations rely on two different codes,
where major parts of the KD-BEM are compiled with C++/MEX and the BLI-BEM
is a pure MATLAB implementation. Therefore, it has been decided not to use their
computational speed as a measure, but rather their accuracy for different element sizes.

Direct comparison of sound absorption coefficients

In Figure 4 the sound absorption coefficients for the three test cases are shown. The
boundary element simulations are using a mesh with a fixed element size of 0.1 mm.
In test case 1 (blue data) KD-BEM and BLI-BEM show similar absorption results with
a tiny shift in frequency as compared to the FEM reference. It is not uncommon to
observe a frequency shift near resonance between FEM and BEM simulations [19].
On the other hand, in test case 2 and test case 3 (the green and red data) some small
discrepancies are observed between the reference FEM and the boundary element
simulations. It is in particular interesting, that the KD-BEM is slightly underestimating
the absorption coefficient near resonance in the two test cases, indicating that higher
density meshing is required as compared to the BLI-BEM. It should be noted, that the



Figure 4: Normal incident sound absorption coefficients for the three test cases. Data
are colored blue (test case 1), green (test case 2) and red (test case 3). Solid (-) lines
corresponds to FLNS-FEM simulations, circles (o) are KD-BEM simulations, and stars
(*) are BLI-BEM simulations. Here, the KD-BEM and BLI-BEM are based on simulations
using the same fixed element size of 0.1 mm

two BEM implementations are fundamentally different, relying on two different element
types (continuous and discontinuous elements) which might lead to the slightly better
results observed when using the BLI-BEM. Moreover, it is also known that discontinuous
elements are often superior in BEM computations [25].

The influence of element length (case 2)

To further study the influence of the element size, the absorption coefficients
calculated for test case 2 using even coarser meshes are plotted in Figure 5. In the figure,
computations corresponding to an element size of 1 mm, 0.5 mm and 0.1 mm are shown.
It is observed that for both the KD-BEM and the BLI-BEM a relatively dense mesh is
necessary to obtain accurate results.

CONCLUSIONS

The paper has presented three different numerical approaches to incorporate viscous
and thermal losses into numerical simulations of acoustic meta-surfaces. Three test cases
are proposed, that pose different difficulties if modeled with simpler equivalent fluid
models. The focus has mainly been to evaluate the performance of the KD-BEM and
the BLI-BEM in terms of their accuracy for a specific element length. Their performance
is evaluated through the normal incident absorption coefficient for the three test cases. It is
shown that relative dense meshes are required to obtain solutions similar to the reference
FLNS-FEM simulations. In general, the BLI-BEM seems to result in slightly less error as
compared to the KD-BEM for the same element length. Additionally, the BLI-BEM has



Figure 5: Normal incident absorption coefficients for case 2 using different element sizes.
In the figure, the solid black curve is the results for the reference FLNS-FEM model using
a very dense mesh, circles (o) correspond to KD-BEM simulations, and stars (*) to BLI-
BEM simulations. The boundary element simulations are based on a mesh using there
different element sizes, where blue, green and red data corresponds to an element size of
1 mm, 0.5 mm and 0.1 mm, respectively.

similar complexity as the regular isentropic BEM problem making it a good candidate for
fast computations and optimization with losses. However, future studies should include
test cases that have designs with overlapping boundary layers, and thereby explore the
possible limitations of the BLI-BEM method to characterize acoustic meta-surfaces.
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