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ABSTRACT 

Tire-Pavement Interaction Noise (TPIN) is one of the main pollutants in highly 

populated areas, especially near highways and main roads. This phenomenon is 

caused by multiple mechanisms involving the excitation of the tire structure, with a 

dominant frequency content within 500-1500 Hz. In this work, the theoretical 

development of a new cylindrical shell model for simulating the vibratory response 

of a rolling tire is presented. Starting with the classic Donnell-Mushtari-Vlaslov 

(DMV) theory for orthotropic shells, the equations of motion are simplified. A new 

single equation defining the radial dynamic behavior of the shell is derived. 

Orthotropic structural properties are assumed in an effort to accurately replicate 

those of an actual tire. Non-uniform structural properties along its transversal 

direction are used to account for differences between its sidewalls and the belt.  The 

effects of rotation and inflation pressure have also been included in the formulation. 

Finally, the process to compute the response of the tire is presented. This is defined 

by modes along the transversal direction and waves propagation along its 

circumferential direction.  
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1. INTRODUCTION 

Tire-Pavement interaction noise (TPIN) is one of the predominant noise sources that 

contribute to urban pollution. Multiple mitigation strategies are typically implemented to 

address this problem. For instance, acoustic barriers are built surrounding highways. On 

the other hand, since 2012, the EU imposed mandatory tire noise regulations that tire 

manufacturers must comply. As a consequence, there is a need for new modeling methods 

that accurately predict TPIN for new tire designs [1].  

The dominant frequency content for TPIN is within 500-1500 Hz [2]. Many potential  
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sources producing this noise have been listed in open literature [3]. However, their actual 

contribution is subject to discussion, without conclusive proof. Nevertheless, two main 

categories have been identified: i) noise produced by the vibratory response of the tire, 

and ii) noise due to air pumping in the contact patch area. In this work, the theoretical 

developments of a new structural tire model for vibration-induced TPIN are presented.   

Empirical data shows that sound intensity levels measured around typical 

commercial rolling tires decay along their circumferential direction [4]. This suggests the 

existence of waves propagating and decaying along the circumference of the tire’s 

structure. Further evidence supporting this premise was found by Bernhard [5]. Measured 

responses showed that above 500 Hz, waves propagating along the circumferential 

direction of the belt decay rapidly and never travel its complete circumference. This 

implies that there is not a modal behavior along this direction.  

In an effort to simulate tire vibrations and its produced noise, multiple models have 

been developed. For example, Kropp [6] modeled a tire as a simply supported plate. This 

approach ignored the tire's curvature since it speculated that it does not influence its 

response above the characteristic ring frequency. O’Boy [7], implemented a multilayered 

cylindrical solid model in order to optimize Kropp’s structural parameters. On the other 

hand, the work by Kim et al. [15] introduced a cylindrical shell tire model that accounts 

for curvature effects and rotation. Finally, Nilsson [8] developed a finite-element-based 

cylindrical tire model. These approaches provide new methods to predict the tire’s 

response. However, all assume a modal solution along the circumferential direction, thus 

incorrectly modeling the tire’s structural behavior above 500 Hz. In order to overcome 

this disadvantage, Pinnington [9,10] developed a model where propagating waves are 

assumed along the circumferential direction of the tire. Yet, the formulation also presents 

some limitations.  

A new cylindrical shell tire model is presented in this paper. The equations of motion 

of the shell are simplified to account only for the noise emitting radial component. 

Additional modeling extensions are also presented in an effort to improve accuracy. 

Finally, a new formulation to compute the response of the tire using a circumferential 

wave propagation approach is shown. 

 

2. CYLINDRICAL SHELL TIRE MODEL 

The structural behavior of a tire is modeled with the cylindrical shell shown in Figure 

1. It is assumed that it is simply supported at its two transversal boundaries. This simulates 

real working conditions where the tire is mounted on a wheel. The dynamic response of 

the shell is defined in terms of three mid-surface displacement components, in accordance 

with Kirchhoff’s hypothesis [12]. Thus, 𝑢 corresponds to the transversal displacements 

along the y-axis, 𝑣 corresponds to the displacements tangential to the shell’s curvature 

defined by the angle 𝜃, and 𝑤 corresponds to the radial displacements along the z-axis. 

In addition, the shell’s radius is defined by 𝑎, its thickness by ℎ, and its transversal length 

with 𝐿𝑇 . Finally, rotation of the tire can be accounted by the spinning velocity Ω [rad/s]. 

The structural behavior of the cylindrical shell is governed by the following four 

kinematic assumptions:  

i) The ratio of its thickness to mid-surface curvature must be very small.  

ii) Displacements are small if they are compared to the shell's thickness.   

iii) Plane sections across the shell thickness remain normal to the mid-surface. This 

implies that both shear strains parallel to the mid-surface, and those along the 

radial direction are negligible.  

iv) Stresses normal to the mid-surface are assumed to be small compared to other 

stress components.   



This set of assumptions is commonly referred to as the first approximation of shell theory 

defined by Love. Finally, additional simplifications that follow Donnell-Mushtari-

Vlaslov (DMV) theory are implemented in this model. In such case, the mid-surface 

displacements on the shell's tangent plane, and their derivatives have negligible effects in 

its curvature and twist [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In accordance with the set of assumptions provided above, a set of fully coupled 

equations of motion can be obtained for a cylindrical shell with a uniform mass per unit 

area defied as m [12,14]. If the effects of rotation are not yet accounted, these are  
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Here, all subscripts correspond to the direction of the resultant forces and moments. 𝑁 

are the normal resultant forces and 𝑄 are the shear forces related to the resultant moments 

𝑀. These are defined as 
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A similar approach was implemented by Kim et al. [15] to predict the complete 

structural response of a rotating tire. However, this approach is not suitable for predictions 

of vibration-induced noise of a tire. The reason is that the generation of sound by a 

vibrating surface is dominated by its normal acceleration. This is the only one responsible 

for the fluid's compression and thus, the radiation of sound [11]. Therefore, a simplified 

cylindrical shell model is presented in this work, such that curvature of the tire is still 

accounted but only the radial displacements are kept.  
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Figure 1. Cylindrical shell model showing coordinate system (blue), geometric parameters (red), and 

mid-surface displacements (black) in a) three-dimensional view and b) side view. 
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3. STRUCTURAL SIMPLIFICATIONS  

This section presents a simplified cylindrical shell model that assumes that its motion 

is dominated by radial vibrations, responsible for noise emission. Thus, inertia effects on 

its tangent plane are negligible. Furthermore, it is assumed that the shell’s radius is much 

larger than its thickness. Consequently, shear forces 𝑄𝜃𝑧 can be neglected as well. In such 

case, eqn. (1) and eqn. (2) become the following  
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A shell that follows these simplifications is typically referred to as a shallow shell. 

However, this denomination is needless. Soedel [16] demonstrated that the simplified 

approach provides excellent modal agreement if compared to classic Love theory for 

isotropic shells [12]. The same can be concluded if the shell’s transversal stiffness is 

larger than the circumferential one. This is the case for regular passenger car tires, as 

shown by the structural properties provided by Pinnington et al. [9]. The only case where 

this approach presents inaccuracies is if the shell’s circumferential stiffness is larger than 

the transversal one. Such conditions show minor discrepancies for the first transversal 

breathing mode.  

A set of expressions for the resultant forces in eqn. (3) and eqn. (5) are required in 

order to describe the shell’s motion. To obtain them, the following kinematic relationships 

must be defined  
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In this case,  𝑒𝑦, 𝑒𝜃, and 𝛾𝑦𝜃  are the strains at any arbitrary location in the shell. 𝜀𝑦, 𝜀𝜃, 

and 𝜀𝑦𝜃  are the normal and shear strains of the mid-surface. 𝑘𝑦, 𝑘𝜃, and 𝜏 are the mid-

surface change in curvature and twist [4]. According to DMV theory, these are given by  
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The stress resultants across the shell can, therefore, be obtained by simply applying 

Hooke’s law written in a tri-dimensional form as  
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where G corresponds to the shear modulus, 𝑣𝑖 is the isotropic material’s Poison ratio, and 

𝐸 is the isotropic material’s modulus of elasticity.  



Finally, the force and moment resultants across the shell can be obtained by 

integrating the stresses eqn. (8) over its thickness, as follows 
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It is convenient to write the solution to these integrals in matrix form as follows 
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(10) 

Here, the resulting forces and moments are now expressed in terms of its strains and 

stiffnesses. 𝐾𝑖𝑗 denotes membrane stiffnesses and 𝐷𝑖𝑗 bending stiffnesses. For the case of 

an isotropic shell, these stiffnesses are given as  
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where, 𝐷 and 𝐾 are the characteristic isotropic stiffnesses of the cylindrical shell, given 

as follows 
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An alternate approach to define the normal resultant forces is given in the work by 

Soedel [8]. In this case, these are defined by  
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where, 𝜙(𝑦, 𝑧, 𝜃) correspond to Airy’s stress function [6,8]. In addition, all expressions 

given in eqn. (13) satisfy eqn. (5). Therefore, they follow the dominant radial vibration 

assumption for cylindrical shells.   

Substituting into eqn. (3), both expressions in eqn. (4), the second expression in eqn. 

(13), and the resultant moments and strains from eqns. (10) and (7), results in 
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On the other hand, from the six strain-displacement in eqn. (7), the following 

compatibility equation is found  
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This equation is obtained by performing a set of substitutions, additions, and subtractions 

using all expressions in eqn. (7) [14, 16]. Furthermore, if the strains in eqn. (15) are 

expressed in terms of the normal forces defined by eqn. (10), and eqns. (13), then the 

compatibility equation becomes  
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Equations (14) and (16) are the equations of motion for the simplified shell model of 

a tire. Up to this point, the shell's coupled equations of motion have been reduced from 

three to two. The two unknowns, in this case, are the shell's normal displacement 

𝑤(𝑦, 𝑧, 𝜃), and the stress function 𝜙(𝑦, 𝑧, 𝜃). However, further simplification can be 

achieved by operating eqn. (14) with the double Laplacian 𝛻4(∙), and eqn. (16) with 

𝜕2(∙) 𝜕𝑦2⁄ . After combining the two, the following equation of motion is obtained   
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Here, it has been assumed that all displacements are harmonic of the form 𝑒𝑖𝜔𝑡. Thus, the 

last term in the left-hand side of eqn. (17) is multiplied by the squared of frequency 𝜔. 

The assumptions made in this section simplified the fully coupled eqns. (1-4) into a 

single equation of motion, given by eqn. (17). This simplified approach defines the 

structural motion of a tire solely in terms of the dominant radial displacement. The 

objective of this process is to avoid unnecessary complications during vibro-acoustic 

response computations. However, additional improvements are still needed in order to 

more accurately capture the characteristic structural behavior of a tire. These are 

addressed in the next section. 

 

4. MODEL EXTENSION FOR TPIN PREDICTIONS 

The simplified cylindrical shell tire model is extended in this section. The following 

set of novel enhancements are implemented: 

i) Orthotropic material properties and radial forcing terms in the formulation.  

ii) Non-uniform properties along the transversal direction of the tire that account 

for structural differences between the tire’s belt and sidewalls.  

iii) Additional membrane tension terms that account for inflation pressure.  

iv) Effects of rotation in the tire’s structural dynamic behavior.  

4.1 Orthotropic Properties and Forcing Terms 

The combination of composite materials typically used in a tire results in different 

structural properties along its circumferential and transversal directions [10]. Thus, a 

physically accurate model of a tire’s structure must account for its orthotropic properties. 

Accordingly, it is appropriate to change the tri-dimensional Hooke’s law given in eqn. (8) 

to the following 
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where G corresponds to the shear modulus and the orthotropic elasticity moduli are  
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where the right-hand side terms containing the prime superscript correspond to the 

effective moduli of the material, while 𝑣𝑦  and 𝑣𝜃 are the effective Poisson’s ratios [13]. 

The resultant forces and moments in the shell then become the following 
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If the same process to obtain eqn. (14) is followed, this time using the bending 

stiffnesses in eqn. (20), then the next equation is obtained 
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This is analogous to eqn. (14), but with the orthotropic effects included.  In addition, it 

should be noted that the radial forcing term 𝐹𝑟 has also been included. 

On the other hand, if the same process to obtain eqn. (16) is followed, but the 

membrane stiffnesses in eqn. (20) are used, then the following orthotropic compatibility 

equation is obtained 
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where,  
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In order to simplify eqn. (21) and eqn. (22) into a single equation of motion for an 

orthotropic shell, eqn. (21) must now be operated as follows 
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On the other hand, eqn. (22) is operated as it was done for eqn. (16). After combining 

both equations, the resulting single equation of motion for the forced, orthotropic 

cylindrical shell becomes  
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The multiplying constants in eqn. (25) are given by 
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4.2 Transversal Non-Uniform Properties 

Though the cylindrical shell tire model does not accurately represent a tire’s actual 

transversal geometry, structural differences between the belt and sidewalls need to be 

accounted for. A smear representation of the tread is used to include its added mass in the 

tire’s belt, as shown in Figure 2. This results in different structural properties between the 

belt and the sidewalls. 

  

 

 

Varying bending stiffness and mass distribution along the tire’s transversal direction 

account for the shell’s non-uniformities. These two were selected following the 

assumption that the radial vibratory motion is dominant. In this case, eqn. (21) becomes 

the following  
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As shown in eqn. (27), the bending stiffness 𝐷11 and the mass 𝑚 now depend on the 

transversal direction along the tire i.e., 𝑦. Following the same operating process described 

Figure 2. Non-uniform cylindrical shell model with a smear tread representation. 
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in the previous sections, eqn. (27) and the compatibility eqn. (22) are used to derive a 

single equation of motion for an orthotropic non-uniform cylindrical shell, as follows 
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(28) 

4.3 Effects of Inflation Pressure 

The effects of the inflation pressure are accounted for by the addition of residual 

membrane tensions along the circumferential and transversal directions of the shell, as 

shown in the work by Soedel [14, 16]. Their approach was modified to account for these 

effects in the simplified cylindrical shell. In this case, eqn. (27) is modified to   
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(29) 

where the membrane tension along the transversal direction of the tire have been 

approximated by 𝑁𝜃
𝑟 = 𝑝𝑎, while the circumferential tension has been approximated by 

𝑁𝑦
𝑟 = 𝑝𝑎 2⁄ . In both cases, 𝑝 is to the tire inflation pressure [13]. The shell’s equation of 

motion for this case becomes  
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(30) 

4.4 Effects of Rotation 

The formulation for the cylindrical shell must also account for effects due to the tire 

rotation. These are briefly shown in Figure 3.  

 

  

 

 
 

 

 
 

 

 

Figure 3. Wave interaction with the rotation of the tire. 

Waves traveling against the 

direction of tire rotation. 

Tire’s direction of rotation, with 

a rotational velocity    [rad/s].  

Location of excitation (contact patch). 

Waves traveling in the same 

direction as tire’s rotation.  





A wave propagation behavior for the mid-frequency range is assumed. In this case, if the 

tire is excited at the contact region, waves that travel along the circumferential direction 

of the tire are produced. Those traveling against the rotation of the tire will be slowed 

down. On the other hand, the velocity of the waves traveling in the same direction as the 

rotation will be higher. Thus, a difference in wavelength between waves traveling in 

opposite directions is expected. In this case, the equilibrium equations become  
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(31) 

 

Note that these equations include the tire’s rotational velocity Ω. Furthermore, since the 

first two expressions in eqn. (31) need to be satisfied, 𝑁𝜃 previously defined in eqn. (13) 

changes to the following 
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(32) 

 

This type of formulation is similar to that proposed by Flügge [17].  

If the same process as in the previous sections is followed, but now using eqn. (31) 

and eqn. (32), the following single equation of motion is obtained  
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(33) 

This is the equation of motion for an orthotropic, non-uniform, inflated, and rotating shell. 

Note that, in this case, the left-hand side term that is multiplied by Ω now includes a new 

constant 𝛼4 = 𝐾12 𝑎2(𝐾11𝐾22 −𝐾12
2 )⁄ . Furthermore, additional residual stress appears 

due to a rotation-induced static deflection of the tire [14, 15]. This is added to the 

circumferential membrane stress coming from the inflation pressure. Therefore, the 

previously defined 𝑁𝜃
𝑟 = 𝑝𝑎 now becomes 𝑁𝜃

𝑟(𝑦) = 𝑝𝑎 +𝑚(𝑦)𝑎Ω2.  

 

5. WAVE PROPAGATION SOLUTION 

Previous work in tire modeling has assumed a full modal solution to compute the 

response of the tire [6-8]. However, for the frequency range of interest, this approach is 

no longer physically accurate, as shown in the experimental findings by  Bernhard [5]. 

Therefore, the following wave propagation solution is proposed   
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In this case, modes are still assumed along the transversal direction of the tire. The nth 

transversal mode equals the summation of a set of amplitudes and admissible functions, 

given as 𝛽𝑛(𝑦) = ∑ 𝐴𝑚𝑛
𝑀
𝑚=1 𝛹(𝑦). On the other hand, 𝑋𝑛(𝜃) = 𝑒−𝑖𝑘𝜃𝜃 is a wave 

propagating solution along the circumferential direction of the tire. Finally, 𝑞𝑛 correspond 

to the modal amplitudes. This novel solution approach has already been presented for a 

flat plate tire model in [18].  

If eqn. (34) is substituted into eqn. (33), then pre-multiplied by a vector of the 

transversal modes, integrated over the transversal direction, and finally, wavenumber 

transformed, the following system of equations is obtained 
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Here, the matrix [𝜔𝑛
2] is a diagonal matrix containing all the natural frequencies of the 

system. On the other hand, [𝐼] is a diagonal identity matrix. Finally, matrices[𝐶1…6] and 
[𝑁1…2] are fully populated matrices. It should also be noted that eqn. (35) is expressed in 

the wavenumber 𝑘𝜃.  

The next step is to decouple the system of equations. To do so, the off-diagonal terms 

of all fully populated matrices are ignored. This decoupling assumption is adequate if the 

matrices’ off-diagonal terms are negligible compared its diagonal ones. This is typically 

the case for an orthotropic tire. The result is the following modal equation  
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Finally, the inverse wavenumber transform must be computed to define the modal 

solution in the spatial domain. This results in the following  
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In this case, the modal input force in eqn. (37) is given by   
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This expression is found by assuming that the input radial force 𝐹𝑟 in eqn. (33) is the 

following harmonic point force  
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where, 𝐹0 is the input force amplitude, and the coordinates (𝑦𝑓,𝜃𝑓) is the location of 

excitation on the shell’s surface.  



6. CONCLUSIONS 

The characteristic structural properties of a tire define a wave propagation behavior 

along its circumferential direction. Properly modeling this behavior by accounting for 

curvature, non-uniform transversal properties, inflation pressure, and rotation is a 

challenging task. The theoretical work presented in this paper shows a simplified 

approach to do this while maintaining physical accuracy. In addition, this model is 

intended to be implemented for TPIN vibration-induced noise. Therefore, the tire’s radial 

displacements have been assumed dominant. This is the first time that such a formulation 

is proposed. Future efforts include new improvements that account for the proper 

transversal geometry of a tire. Finite element analysis will be used to do so. Furthermore, 

noise and vibrations results will be computed in the future to complement this work.  

5. ACKNOWLEDGMENTS 

This project has been partially supported by the Center for Tire Research (CenTiRe), 

an NSF-I/UCRC (Industry/University Cooperative Research Centers) program led by 

Virginia Tech. The authors hereby wish to thank the project mentors and the members of 

the industrial advisory board (IAB) of CenTiRe for their kind support and guidance. 

 

6. REFERENCES 

1. T. Berge, U. Sandberg, “Five years of EU tyre labelling – success or failure?”, Inter-Noise and 

Noise-Con Congress and Conference Proceedings, Hong Kong, China, pp. 876-887(12), 2017. 

2. U. Sandberg, “The Multi-Coincidence Peak around 1000 Hz in Tyre/Road Noise Spectra”. 

Proceeding of Euronoise, Naples, paper ID: 498/p.1, 2003. 

3. Kuijpers, A., Van Blokland, G. “Tyre/road noise models in the last two decades: A critical 

evaluation”, Inter-Noise Congress Proceedings, Hague, Holland., p. 2494, 2001. 

4. P. Donavan, L. Oswald, “Quantification of Noise Mechanisms of Blank, Rib, and Cross-Bar Tread 

Bias-Ply Truck Tires”, General Motors Research Laboratories, no. GMR-3750, 1981. 

5. R. Bernhard, “Observations of the structural acoustics of automobiles”, Inter-Noise Congress and 

Conference Proceedings, Nice, France, 27-30 August, 2000.  

6. W. Kropp, “A mathematical model of tyre noise generation. Heavy Vehicle Systems”, Journal of 

Vehicle Design, Vol 6, Nos 1-4, 1999. 

7. D.J. O’Boy, A.P. Dowling, “Tyre/road interaction noise – A 3D viscoelastic multilayer model of a 

tyre belt”, Journal of Sound and Vibration 322, pp 829 – 850, 2009. 

8. C.M. Nilsson, “Waveguide Finite Element Applied on a Car Tyre”. Doctoral Thesis. Royal Institute 

of Technology. Department of Aeronautical and Vehicle Technology, 2004.  

9. R.J. Pinnington A.R. Briscoe, “A Wave Model for a Pneumatic Tyre Belt”, Journal of Sound and 

Vibration 253(5), 941-959, 2002. 

10. R.J. Pinnington, “A wave model of a circular tyre. Part 1: belt modelling”, Journal of Sound and 

Vibration, 290, pp 101-132, 2006.  

11. F. Fahy, P. Gardonio. “Sound and Structural Vibration: Radiation, Transmission and Response”. 

Amsterdam; London: Elsevier/Academic, 2007. 

12. A.W. Leissa "Vibration of Shells", NASA SP-288, 1973. 

13. A.C. Ugural, “Plates and Shells: Theory and Analysis”, CRC Press, Taylor and Francis Group, 2018. 

14. W. Soedel, “Vibrations of Shells and Plates”. Taylor & Francis, 3rd edition, 2005. 

15. Y.J. Kim. J.S. Bolton, “Effects of rotation on the dynamics of a circular shell with application to tire 

vibration”, Journal of Sound and Vibration 275, 605-621, 2004. 

16. W. Soedel, “Simplified Equations and Solutions for the Vibration of Orthotropic Cylindrical Shells”. 

Taylor & Francis, 3rd edition, 2005. 
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