
Fast computational aeroacoustics using random distributions
of Kirchhoff’s spinning vortices with application to sibilant
sound generation.

Pont, Arnau,
Guasch, Oriol1,
Arnela, Marc

GTM Grup de recerca en Tecnologies Mèdia, La Salle - Universitat Ramon Llull
C/ Quatre Camins 30, 08022 Barcelona, Catalonia

ABSTRACT

Hybrid approaches to low Mach number computational aeroacoustics (CAA)
for three-dimensional problems have a high computational cost and often demand
resorting to supercomputing facilities. The bottleneck concerns the first step of the
process, in which a computational fluid dynamics (CFD) simulation is carried out to
solve the incompressible Navier-Stokes equations, to obtain the source term for the
acoustic wave equation. In this work we suggest that, for some problems in which
average results are only needed, it may be possible to avoid the CFD simulation and
approximate the flow noise sources by means of a random distribution of Kirchhoff’s
spinning vortices. In this way, one simply needs to solve an acoustic linear wave
operator to solve the aeroacoustics problem. We have applied such methodology to
simulate the generation of the sibilant sound /s/ on a realistic geometry for which
CAA and experimental data exist. After validation, the versatility of the proposed
approach is tested on a simplified geometry, which may be useful to synthesize more
complex sound in the future, like syllables. Implementation details of the vortex
distribution in a stabilized finite element (FEM) code are also discussed.
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1. INTRODUCTION

To generate a sibilant sound like /s/, we press the tongue against the hard palate,
which accelerates the flow emanating from the glottis and directs it towards the small
gap between the incisors. There, a rapid turbulent jet develops that crosses the cavity
between the lower incisors and the lower lips. The strong turbulent eddies in that region,
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as well as their diffraction by the upper incisors, become a source of aerodynamic sound,
which we perceive as an /s/ (see e.g., [1–4]).

The physical mechanisms of sibilants’ generation has been an object of study
for decades (see e.g., [5] for models and references). In recent years, the advent of
supercomputer facilities has allowed to perform large-scale simulations based on hybrid
computational aeroacoustics (CAA) methods. In this sense, [1] presents a very detailed
analysis of the influence of the geometrical parameter variation on the generation of /s/
and /S/ in a simplified rectangular three-dimensional (3D) vocal tract, while [2] provides
a qualitative validation of the acoustic output of an /s/ in a realistic geometry.

However, the extreme computational cost of CAA makes the generation of audible
sibilant sequences still unaffordable. The bottleneck in the computational cost resides in
the solution of the non-linear incompressible Navier-Stokes equations, which is carried
out in the first step of hybrid CAA to obtain the acoustic source terms (typically the
double divergence of Lighthill’s tensor). In this work, we suggest to skip that step by
replacing the source term with a tailored, random, distribution of Kirchhoff’s spinning
vortices [6, 7]. In this fashion, only a linear wave operator needs to be solved. The use
of simplified tuned models for /s/ generation is of common practice in 1D approaches to
voice synthesis [8,9]. Nonetheless, our goal here is to develop a physics-based model that
could emulate the turbulent eddies in the source region of /s/ generation. We validate that
model against existing CAA results and also prove its usefulness in simplified vocal tract
geometries, which could open the door to synthesize more complex sounds as syllable /sa/.

This paper is structured as follows. Sec. 2 is devoted to presenting the underlying
equations, with special attention to the wave equation in mixed form [10], as well as to
describe the proposed random distribution of Kirchhoff’s vortices that should match the
large eddy simulations (LES) in [2]. Next, in Sec. 3 we introduce the stabilized FEM
formulation used to discretize the equations, placing primary emphasis on the treatment
of the suggested vortex distribution. The results from numerical simulations are shown
in Sec. 4. The validation carried out in [4] is briefly reviewed and the outcomes of the
simulations on a simplified vocal tract are presented. Conclusions are drawn in Sec. 5.

2. PROBLEM STATEMENT

2.2.1. The standard hybrid CAA approach

The most common approach for simulating low Mach number flow noise resorts
to hybrid CAA exploiting Lighthill’s acoustic analogy. A CFD simulation of the
incompressible Navier-Stokes equations is carried out in the first step of method to
compute the acoustic source term, which takes most of the computational cost. The
source term, namely the double divergence of Lighthill’s tensor T [11], is then plugged
into a linear wave operator that propagates sound to the far-field, namely

c−2
0 ∂tt p − ∇2 p = (∇ ⊗ ∇) : T ≈ ρ0 (∇ ⊗ ∇) : (u0 ⊗ u0) in Ω, t > 0. (1)

In Equation 1, p denotes the acoustic pressure, ρ0 the air density, u0 the incompressible
flow velocity and c0 the speed of sound. Note that we have made use of the standard
approximation of the Lighthill’s tensor for low Mach numbers. For the sake of
conciseness, boundary and initial conditions have not been specified.

The computational cost of the second step of the hybrid CAA (i.e. solving Equation 1)
is much more affordable than the first one because the wave equation is linear and,
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Figure 1: Realistic 3D vocal tract for sibilant /s/.

moreover, one does not require the very fine meshes needed to resolve turbulent flows.
As mentioned in the Introduction, the main focus of this work consists in finding an
alternative procedure to derive the acoustic sources involved in the generation of sibilant
sound /s/. This would prevent the use of supercomputer facilities as in [1, 2] to produce
that sound.

2.2.2. Random distribution of Kirchhoff’s spinning vortices

Given that the acoustic source term in the right hand side of Equation 1 consists in
a distribution of quadrupoles, it has been recently proposed in [4] that it could be well
approximated by means of a random distribution of Kirchhoff’s spinning vortices (see
e.g., [6, 7]). The idea is to replace Lighthill’s tensor, T , with the expression,

T ≈
N∑

n=1

Tn(Yn, t)δ(Xn), (2)

where N stands for the number of vortices and δ for the Dirac generalized function;
Xn indicating the location of the n-th vortex. Tn designates the vortex strength, which
depends on the parameter vector Yn = (Y1 . . . YP)>, P being the number of properties
needed to describe Tn. A Kirchhoff vortex is a two-dimensional rotating eddy with elliptic
cross-section and uniform vorticity modulus Ωn, which leads to an angular frequency
Ωn/4. The vortex radiates sound with a quadrupolar sound radiation pattern at frequency
fn = Ωn/4π.

To reproduce the turbulence regime encountered at the sibilant generation region,
between the inter-dental gap and the lower lips, the distribution in Equation 2 is
considered to be random, with a uniform probability density function assigned to Xn.
Each vortex is also assigned a random lifetime and the P parameters in Y , are also
identified as random variables. For a vortex spinning in the yz sagittal plane of the vocal



tract geometry in Fig. 1, the expression for Tn reads

Tn(t) = 2π3 f 2
n εna4

n

 1 0 0
0 cos (2π fnt) sin (2π fnt)
0 sin (2π fnt) − cos (2π fnt)

 [sin2 (2πβnt) − sin2 (2πβnt − 1/2)
]
,

(3)
with an(1 ± εn) being the semi-major and minor axes of an ellipse with eccentricity εn.
The eccentricity has been fixed constant for simplicity in the forthcoming expressions.
The remaining elements in Equation 3 are the frequency, the rotation matrix and a Hann
windowing which determines the finite lifetime of the vortex in the semiperiod [0, β−1

n /2].
The parameter vector of random variables in Equation 2 is therefore identified with Yn =

(an, fn, βn)>.
The next task is to assign proper sampling spaces to the variables in Yn, such that

the distribution in Equation 2 could match the outputs from the CAA simulations on
realistic geometries, like the one in Fig. 1 (see [2]). For instance, the parameters in Yn

should guarantee that the energy distribution of the vortices is that obtained from a CFD
simulation of the turbulent flow on the vocal tract (see Fig. 2, derived from [2]). In
that figure, three different regions can be distinguished, the last one corresponding to
the celebrated Kolmogorov inertial range. To reproduce them, it is found that an should
behave as follows,

an =


O( f −3/5

n ) if 0.4 kHz < fn ≤ 2.3 kHz,
O( f −0.93

n ) if 2.3 kHz < fn ≤ 12 kHz,
O( f −11/6

n ) if fn > 12 kHz.
(4)

The first two slopes have been obtained heuristically, whereas the last one has been
adapted to match with Kolmogorov’s energy cascade. In that range the kinetic energy is
characterized by v2

n ∼ k−5/3
n , where vn represents the vortex tangential speed. Because

kn = 2π fn/c0, λn ∼ O(ln/M) and v2
n = 4π2a2

n f 2
n , the average size of the vortices shall

Figure 2: Energy spectrum of the flow velocity obtained with an incompressible LES at a
point in the noise generation region.



behave as an ∼ O( f −11/6
n ). In order to avoid unrealistic sizes, fn has been limited to values

above 400 Hz (see [4] for full details).
As regards the frequency, fn, it has been assigned a uniform probability distribution to

cover the whole audible range. Besides, and as said before, the parameter βn is introduced
to assign the vortices a finite life time. This avoids tracking them, which is complex in
an Eulerian flow description. The arrival and departure of a vortex at a given location
Xn is represented by a β−1

n /2 Hann windowing, with βn ∈ [0.4, 2.3] kHz. This provides
a smooth activation and deactivation of Tn. A minimum value of βn = 0.4 kHz has been
set to avoid excessive vortex lifetimes, while an upper limit of βn = 2.3 kHz has been
imposed consistent with the low frequency range of Equation 4. Those choices reinforce
the dominance of the low frequency scales found in Fig. 2. However, this model interacts
with the spectrum assigned to the vortices in Equation 2. Consequently, the heuristic
process that has led to the correlation for an in the [0.4, 2.3] kHz range has considered the
windowing effect.

The random vortices are assigned to ∼ 6% of the points in the source region. This
relatively low density avoids excessive shadowing between them and reproduces well the
results from the CAA simulations in [2].

2.2.3. Weak formulation of the problem

As mentioned in the Introduction, the formulation has been implemented in a
finite element code which involves dealing with the weak form of the problem. That
corresponding to Equation 1 can be derived as usual, first multiplying the equation by
a pressure test function, q, and then integrating over the computational domain Ω. The
mathematical problem becomes that of finding p(·, t) for all t > 0 such that,

c−2
0 (∂2

tt p, q) + (∇p,∇q) − c−1
0 (∂t p, q)ΓI∪Γ∞ + µWc−1

0 (∂t p, q)ΓW

=

N∑
n=1

[
−(∇q,∇ ·

[
T ′nδ(Xn)

]
) + (q,∇ ·

[
T ′nδ(Xn)

]
· n)∂Ω

]
(5)

for all q. For the sake of brevity and simplicity, the description of the functional spaces
where the solution and test functions belong will be omitted in this work. Equation 5 is
to be supplemented with appropriate initial conditions.

Unfortunately, the inclusion of the source term of Equation 2 into Equation 5 leads
to the presence of the derivative of a delta function in the right hand side. In principle,
this could be avoided by making use of the wave equation in mixed form [10, 12], which
involves the acoustic particle velocity, u, along with the acoustic pressure. The mixed
formulation of Equation 1 reads,

1
ρ0c2

0

∂t p + ∇ · u = 0, (6)

ρ0∂tu + ∇p = −

N∑
n=1

∇ ·
[
T ′nδ(Xn)

]
. (7)

The weak for of the above expressions is now found multiplying Equation 6 by a pressure
test function, q, and Equation 7 by a velocity test function, v, so that once having



integrated over the computational domain Ω we are left with,

1
ρ0c2

0

(∂t p, q) − (u,∇q) +
1
ρ0c0

(p, q)ΓI∪Γ∞ −
µW

ρ0c0
(p, q)ΓW = 0,

ρ0(∂tu,v) + (∇p,v) =

N∑
n=1

(T ′nδ(Xn),∇v), (8)

for all q and v. Note that no Dirac’s delta function derivative appears in Equation 8 and
that the boundary source term stemming from the integration by parts, namely (T ′nδ(Xn) ·
n,v)∂Ω, disappears because the test functions vanish on the domain borders. Working
with the wave equation in mixed form has another advantage, it is the natural choice if
one wanted to generate dynamic sounds like a diphthong (see [13]) or a syllable like /sa/.

3. NUMERICAL DISCRETIZATION

3.3.1. Spatial discretization

The discretization of Equation 8 has been carried out with the method of lines. A
second order backwards finite difference scheme has been implemented for the time
discretization, while finite elements have been used for the spatial one. The former is
standard so let us focus on the latter because it has some implications concerning the
source term in Equation 2. First we note that unlike the wave propagation problem
in Equation 1, the mixed problem of Equation 8 is constrained by an inf-sup compatibility
condition for p and u, which prevents using equal interpolation orders for them. To
circumvent that condition, one can resort to stabilization methods, like the variational
multiscale (VMS) ones [14,15], which have been already applied to the wave equation in
mixed form in [10, 13, 16].

According to those works, given a finite element partition of the computational domain
Ω, with nel elements and np nodes, the stabilized FEM approach to Equation 8 consists in
finding ph(·, t) and uh(·, t) for all t > 0, such that

1
ρ0c2

0

(∂t ph, qh) − (uh,∇qh) +
1
ρ0c0

(ph, qh)ΓI∪Γ∞ −
µW

ρ0c0
(ph, qh)ΓW +

∑
nel

(τp∇ · uh,∇ · vh)Ωe = 0,

ρ0(∂tuh,vh) + (∇ph,vh) +
∑
nel

(τu∇ph + τu

N∑
n=1

∇ ·
[
T ′nδ(Xn)

]
,∇qh)Ωe =

N∑
n=1

(T ′nδ(Xn),∇vh),

(9)

where τp and τu are stabilization parameters whose expressions can be found e.g., in [10,
12, 13]. Note that with the mixed formulation we got rid off the delta function derivative,
but that recurs in the stabilization term of the second line in Equation 9. We shall next see
how to deal with that term, as well as with the force one in the right hand side of the same
equation.

3.3.2. Discretized distribution of Kirchhoff’s vortices

The trick to deal with the terms involving delta functions in Equation 9 consists in
properly smoothing them. Let us refer to the finite element shape functions as Na, with
a running from 1 to np and designating a node located at xa. Both, the unknowns and



test functions of the problem can be expanded in terms of the shape function basis. For
example, the i-th component of the velocity can be expressed as uhi =

∑
a Na(x)Ua

i , with
Ua

i standing for the nodal value uhi(xa).
The smoothing of the force term of Equation 9 takes place in two stages. First, a vortex

is no longer considered to be a point source at Xn, but to occupy an entire finite element.
This allows us to replace the problematic delta function δ(Xn) by a sort of Heaviside
function ΠK , such that ΠK(Xn) = 1 if Xn ∈ int(K), K being a particular element domain,
and zero elsewhere. Then, the contribution of a single vortex becomes

(T ′nδ(Xn),∇vh) ' (T ′nΠK(Xn),∇vh) =
∑

a

Va
i

∫
Ω

T ′n |i jΠK(Xn)∂ jNadΩ

=
∑

a

Va
i

∑
ne

∫
Ωe

T ′n |i jΠK(Xn)∂ jNadΩe =
∑

a

Va
i T
′
n |i j

∫
K
∂ jNadK, (10)

where the summation convention over spatial repeated indexes is assumed. Unfortunately,
numerical tests revealed that Equation 10 still suffers from numerical instabilities, so
an additional smoothing was applied by L2 projecting T ′nΠK(Xn) onto the finite element
space. That is found as,

P(ψh) =

nu∑
a=1

Na (x) Pa, (11)

where the coefficients Pa are given by the solution of the linear system∑
a

MbaPa =

∫
Ω

NbψhdΩ, b = 1, . . . , np (12)

Mba :=
∫

Ω

NbNadΩ. (13)

If we transform M in (13) into a lumped diagonal matrix diag(M11, . . . ,Mnpnp) using
a nodal quadrature rule, the following approximation of (T ′nδ(Xn),∇vh) can replace that
in Equation 10,

(T ′nδ(Xn),∇vh) ' (P[T ′nΠK(Xn)],∇vh) =
∑

a

∑
b

Va
i

[ ∫
Ω

∂ jNaNbdΩ
]
Pb

=
∑

a

∑
b

Va
i

[ ∫
Ω

∂ jNaNbdΩ
]
M−1

bb

[ ∫
Ω

T ′n |i jΠK(Xn)NbdΩ
]

=
∑

a

∑
b

Va
i

[ ∫
Ω

∂ jNaNbdΩ
]
M−1

bb

[
T ′n |i j

∫
K

NbdK
]
. (14)

In what concerns smoothing the stabilization term (τu∇ ·
[
T ′nδ(Xn)

]
,∇qh)Ωe

in Equation 9, we have proceed with a first projection onto the finite element space
(τuP

{
∇ ·

[
T ′nΠK(Xn)

]}
,∇qh)Ωe , followed by an integration by parts restricting the source

to the interior of the elements, which provides the nodal vector values

P b =M−1
bb

∫
Ω

Nb∇ ·
[
T ′nΠK(Xn)

]
dΩ = −M−1

bb

∫
K
∇Nb · T ′ndK. (15)

Therefore, the final expression for the stabilization term (τuP
{
∇ ·

[
T ′nΠK(Xn)

]}
,∇qh)Ωe

becomes

(τuP
{
∇ ·

[
T ′nΠK(Xn)

]}
,∇qh)Ωe = −

∑
a

∑
b

Qa
[ ∫

Ω

∂ jNaNbdΩ
]
M−1

bb

[
T ′n |i j

∫
K
∂iNbdK

]
.

(16)
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Figure 3: Simplified vocal tract geometry for sibilant /s/.

4. RESULTS

As regards the numerical simulations, two aspects will be considered. The first one
concerns the validation of the proposed Kirchhoff’s vortex random model in a realistic
geometry like that in Fig. 1. This task has been very recently carried out in detail
in [4], through comparison with the CAA results presented in [2] and the experimental
data in [17]. It will be shortly reviewed below. The second aspect we want to address
concerns checking whether the vortex model could be applied to further geometries than
the realistic one used to adjust the model. To that purpose the simplified axisymmetric
vocal tract geometry in Fig. 3 will be considered. Could the model perform well in such
simple geometries that would enormously facilitate future steps like generating syllables
using them (e.g., /sa/).

4.4.1. Validation of the Kirchhoff vortex random model as a source for fricative /s/

The realistic oral cavity geometry used to validate the Kirchhoff’s vortex model in [4]
with the CAA in [2] was extracted from [18] and [19]. The random model of spinning
vortices was prescribed in the space between the incisors and the lower lip, where most
turbulent eddies get generated according to [2]. The kinetic energy of various realizations
of the random model were first verified in [4] to satisfy the three slope behavior of Fig. 2,
obtained from the CFD step of the CAA in [2]. The Kirchhoff’s vortex model therefore
succeed in emulating the physical patterns of flow turbulence (we do not reproduce those
results here though).

A second, and critical, validation feature was that of checking whether the model was
capable of reproducing the characteristic spectrum of phoneme /s/. In this regard, the
Welch power spectrum at a point located outside the mouth was computed in [4] from the
average of 20 random realizations of the model. That average spectrum is reproduced in
Fig. 4 (dashed black line) and compared to that from the CAA in [2] (dotted red line) and
the experimental results in [17] (dotted blue line). The resemblance of the three curves
is apparent, showing a strong dip near 2 kHz, followed by a peak close to ∼ 4 kHz and a
high energy concentration between 8 and 10 kHz.

We would like to emphasize that one of the most relevant outcomes of the proposed
method concerns the reduction of the computational mesh size. The mesh in the
simulations has been dimensioned to capture the smallest audible wavelength involved in
sibilant /s/ generation, namely λ = 0.0175 m, corresponding to ∼ 12 kHz. For a proper
resolution, the bulk element size has been set to h = 0.002 m, with a finer remeshing at
the occlusion because of the complexity of the geometry. As a result, the ∼ 4.5 × 107



Figure 4: Welch power spectrum at P2 for different realizations of sibilant /s/ using
a simplified geometry (continuous grey lines) with its corresponding average value
(continuous black line). Equivalent spectra using a realistic vocal tract geometry:
Kirchhoff’s vortex model (dashed black line), CAA computation (dotted red line) and
experimental values (dotted blue line).

elements of the CAA model in [2] get reduced to only ∼ 7 × 105 linear P1/P1 elements.
In regard to the parameters in Equation 9, a time step δt = 2.5 × 10−6 s has been used,
together with an air density ρ0 = 1.2 kg/m3 and a sound speed c0 = 350 m/s.

4.4.2. Generation of sibilant fricative /s/ using a full length simplified vocal tract

As mentioned before, it would be very convenient that the proposed vortex model
could also work well for simplified geometries. This is so because working with realistic
geometries has one important disadvantage: the difficulty to extend them in an Arbitrary
Lagrangian Eulerian reference (ALE) for dynamic phonation problems, such as the
generation of diphthongs and syllables, since all the nodes of the vocal tract boundary
nodes need to follow a compatible deformation mapping from the initial to the final
shape. This geometrical compliance becomes much easier for simplified geometries with
circular or elliptic cross sections, where some tricks can be exploited to avoid costly
remeshing strategies [13, 20]. For this reason, the realistic-like geometry in Fig. 1 is
replaced with that in Fig. 3. The latter has been obtained using the 1D area functions
in [21] to generate an axisymmetric 3D vocal tract with circular cross-sections, which has
been somewhat tuned with an additional extension beyond the constriction to consider
the incisors. The challenge now consists in reproducing an acoustic output for /s/ similar
to the ones from the previous section, depicted in Fig. 4.

It is to be mentioned that the drastic geometric simplifications have required tuning one
parameter of the model: the vortex density. In the previous section that was set to 6% but
now has been increased to 35%. This makes sense if one considers that the region where
the source is now prescribed is much smaller than that from the realistic vocal tract, due
to the symmetry of the occlusion. Proceeding like in [4], we have ran several realizations
of the model and computed the corresponding Welch power spectra at the same point in
the outer domain as for the realistic geometry. Those spectra, together with their average



Figure 5: Impulsional transfer function of the realistic and the simplified geometries.

value, are also plotted in Fig. 4. As observed from the figure, the general trends of the
realistic /s/ are recovered except for two big differences. The first and most remarkable
one is the large dip in the 4 − 5 kHz region, followed by the strong peaks at 6 and 8 kHz.
The explanation for that behavior comes from the difference between the impulsional
transfer function of the simplified vocal tract geometry and that of the realistic one, which
have been plotted in Fig. 5. While the transfer function of the realistic vocal tract increases
monotonically up to 8 kHz, that from the simplified geometry becomes smaller beyond 4
kHz and exhibits a series of dips and peaks which coincide with those observed in Fig. 4.
For instance, the two resonances around 6 kHz in Fig. 4 get clearly reflected in Fig. 5. The
high frequency peaks in the transfer function of the simplified geometry might be caused
by an excessive length of the appended extension and/or the shape of the vocal tract exit.
By modifying such elements, the peaks in the transfer function may move to much higher
frequencies and better resemble that of the realistic vocal tract.

The other big difference between the spectra of the realistic and simplified vocal tracts
concerns the high frequency content. As observed, when the Kirchhoff’s vortex model is
applied to the simplified vocal tract it is unable to generate enough acoustic pressure at
high frequencies. This is partly justified by the lower values of the transfer function at
this range but also by the circular symmetry of the vocal tract geometry. Probably, the
occlusion of a vocal tract with elliptical cross-sections (see e.g., [22,23]) would be closer
to the realistic one and produce better results.

5. CONCLUSIONS

In this paper, we have suggested to construct an acoustic source term based on a
random distribution of Kirchhoff’s spinning vortices, to avoid long CAA computations in
order to generate sibilant sounds. The new source model has been validated against CAA
computations and experimental results in realistic 3D vocal tract geometries, showing
great potential to produce sibilants at a low computational cost.

Besides, the vortex model has been also tested in a simplified vocal tract geometry to
check whether it could be exploited to generate more complex sounds, like syllables. The



results revealed some remarkable discrepancies with those obtained from a realistic vocal
tract. An analysis of the realistic and simplified vocal tract transfer functions has revealed
that those discrepancies may be probably attributed to inaccuracies in the simplified vocal
tract, rather than to the performance of the Kirchhoff’s vortex model. Future efforts will
be placed on improving the simplified vocal tracts so that their response could better
resemble that of realistic ones. Changing the shape, location and size of the constrictions,
and replacing circular cross-sections with elliptical ones could probably improve the
herein reported results.
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