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ABSTRACT 

A truthful description of the energy transport process, which can be depicted by a 

physical quantity, namely power flow, is a significant angle to understand the 

Acoustic Black Hole (ABH) effect and its applications. To tackle the defect of 

existing semi-analytical models on ABH structures in calculating the higher-order 

derivatives of structural displacement, an energy formulation, in conjunction with 

a Rayleigh-Ritz procedure, is proposed for an ABH beam, in which the transverse 

displacement is constructed using Fourier series with supplementary terms. This 

treatment ensures the continuity and the smoothness of all relevant derivatives 

terms in the entire calculation domain, thus allowing the calculation of the power 

flow and structural intensity. Numerical examples are presented to illustrate the 

reliability and effectiveness of the established model. Numerical analyses on the 

dynamic behavior and power flow show the spatial and frequency characteristics of 

energy transmission process and reveal the ABH working mechanisms. While 

providing an efficient analysis tool, this work enriches the existing understanding on 

the dynamic behavior of ABH structures. 
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1. INTRODUCTION 

The Acoustic Black Hole (ABH) phenomenon, featuring a gradual phase velocity 

reduction of the flexural waves in a thin-walled structure with a power-law tailored 

decreasing thickness, has been explored for various applications. Thanks to its unique 

wave retarding and energy focalization feature, significant vibration attenuation can be 

achieved by using a small amount of damping near the tip of the ABH taper. Since the 

pioneer work of Mironov [1] and a series of significant work of Krylov et al. [2-5], 

interest in exploring various aspects of ABH has experienced a flourishing development 
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in the past twenty years. Typical work ranges from theoretical to experimental studies as 

well as various applications in both ABH beams [6-8] and plane structures of various 

shapes such as circular [9,10], elliptical [11,12] and rectangular plates [13]. 

It is very significant to understand the wave propagation process and efforts have been 

made using different metrics such as reflection coefficient [14], cross-point mobility 

[8,15,16] and energy distribution [17,18] etc. As a useful attempt, experimental approach 

was adopted to visualize the wave propagation using a combined laser excitation 

technique and laser scanning vibrometer measurement [17].  

A predictive model capable of characterizing the energy transport process in ABH 

structure is of great interest to guide the practical design of ABH structures. Apart from 

the widely used FEM/BEM methods, effort has also been made in developing semi-

analytical modeling techniques for beams [8] and plates [19] based on different types of 

wavelets [8, 15], and these works show the advantages of the semi-analytical modeling 

and its accuracy in predicting the structural response.  

Motivated by this, a revamped semi-analytical modeling approach is proposed in this 

paper for power flow analysis of an elastically restrained ABH beam. Energy formulation 

in conjunction with Rayleigh-Ritz procedure is employed for the dynamic description of 

the ABH beams. Numerical examples are then presented to validate the correctness and 

effectiveness of the proposed model through the comparison with results from other 

approaches. Using the proposed model, power flow and structural intensity in ABH beam 

are studied. Finally, conclusions are given.  

 

2.  THEORETICAL FORMULATION 

 

2.1 Elastically Restrained ABH Beam 

As illustrated in Figure 1, we consider a Euler-Bernoulli ABH beam undergoing 

transverse vibration under a concentrated force excitation F at xf, with the coordinate 

origin being located at the left end of the beam. The whole system is assumed to be 

symmetrical with respect to the mid-line. The beam, having a length L and a constant 

width b, has a variation thickness profile h(x) and is symmetrically covered by a damping 

layer of thickness hd.  

 
Figure 1 Elastically retrained ABH beam with damping layers fully coupled  

The thickness variation function across the entire ABH beam (including a uniform part 

and ABH part) is expressed as:  
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 As shown in Figure 1, other geometrical parameters, such as the total length Ltotal and 

the inevitable thickness truncation results from the practical manufacturing limitation, h0.  

Boundary conditions of the beam are simulated by introducing a set of elastic springs at 

both ends against translation and rotation, respectively. Through a proper assignment of 

the restraining spring coefficients, all the classical boundary conditions as well as their 

combinations can be readily simulated. Structural damping is simulated through a 

complex Young’s modulus E=E(1+jη), with η being the damping loss factor, taking 

different values for the beam and the damping layer. 
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2.2 Fully Coupled Dynamic Modelling of ABH Beam  

A fully coupled dynamic model is established based on the Euler-Bernoulli beam 

theory and energy principle. The system Lagrangian Ls can be written as 

sL V T W                                                      (2) 

where V and T are the total potential and kinetic energies, including the elastic boundary 

restraints as well as the damping layers. W is the work done by the concentrated force 

applied at the beam structure.  

The potential energy V writes： 
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in which, the two terms in the first row are related to the strain potential energies due to 

the traverse deformation of the host ABH beam and the damping layers, respectively. 

Here, damping layers cover the beam surface region [xd1, xd2]. The remaining two terms 

in the second row represent the elastic potential energies stored in the rotational and 

translational springs at clamped end.  

The kinetic energy T can be written as: 
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In the energy expressions above, the material parameters are distinguished by 

superscripts, respectively. And the work W done by the external point force excitation is： 

f f
0

= ( ) ( )d
L

W F x x w x x                                                (5) 

where F denotes the external force and δ(x) is the Dirac delta function to define the 

excitation position at xf.  

 

2.3 Improved Fourier Series Solution 

With the aim to satisfy the differential continuity requirements by the force equilibrium 

and geometric coordination at the general elastic end supports, the standard Fourier series 

is supplemented by boundary smoothened auxiliary functions as follows: 
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in which i(x) are four auxiliary functions, weighted by four coefficients ci (i=1,2,3 and 

4). In conjunction with Rayleigh-Ritz procedure, the discretized system equation can be 

derived and expressed in the following matrix form 

 2( ) K M R F                                                 (7) 

where M and K are the mass and stiffness matrices, respectively; ω is the angular 

frequency; R and F are the coefficient vectors of the improved Fourier series expansion 

and the external force loading, respectively. Equation 7 can be solved through standard 

matrix inversion operation. By removing the force vector on the right-hand side, all the 

modal information can be obtained by solving a standard eigen-value problem. 

Substitution of the corresponding eigenvector into the improved Fourier series 

displacement expression, one can get the mode shapes of the ABH beam structure. 

 

2.4 Power Flow and Structural Intensity of ABH Beam 



Thanks to the satisfactory derivative continuity characteristics of the constructed ABH 

beam flexural displacement expression, all the internal force required in the structural 

intensity analysis can be determined in a much straightforward pattern through term-by-

term differential operation. The input time-averaged power flow Pinput is defined as:  
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where v(t) is the vibrational velocity at the force application position; t and Tp are the time 

and observation period, respectively.  

 As to the vibration energy transmission in the beam structure, the structural intensity 

Ix,transfer，which is defined as a vibration power flow through per unit cross sectional area 

of the beam, is expressed as: 
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3.  NUMERICAL RESULTS AND DISCUSSIONS 

 

3.1 Model Validation 

To check and demonstrate the ability of current model for ABH beam structure. The 

forced vibration is analyzed for this ABH beam structure, with a unit point force. 

Presented in Figure 2 is a comparison of the acceleration response of the ABH beam, 

calculated from the current model and FEM, respectively. Two representative mode 

shapes, namely the fifth and twentieth modes, are also given in the figure. From this figure, 

it can be observed that both the trend and magnitude of vibration frequency response, as 

well as the two arbitrarily selected mode shapes, agree very well with each other between 

these two approaches in the whole frequency range of interest. Various resonant peaks in 

the frequency response curve actually correspond to the structural modes of the ABH 

beam.  

 
Figure 2 Comparison of vibration acceleration response of ABH beam calculated 

from the current model and FEM in COMSOL 

 

3.2 Power Flow and Structural Intensity of ABH Beam Without Damping Layers 

The total input power can be estimated from the applied force amplitude and point 

mobility. Two representative observing points are also chosen for the computation 

of transfer power flow, for which oneis located in the uniform region of the beam, 

whilst the other in the ABH region. Figure 3 presents the variation of the total input 

power and power flow at the two observing points.  
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Figure 3 Frequency response of the total input and transfer power flow in ABH beam 

structure 

The power flow can be estimated from the applied force amplitude and point 

mobility. In order to better understand the energy transport process and its 

underlying mechanism associated with the ABH beam, structural intensity 

distribution across the entire beam is examined for some representative modal 

frequencies, namely f4=5072Hz and f11=39070Hz, as shown in Figure 4. In the 

subplots, the positive and negative values of structural intensity denote the power 

flow to the right and left direction across each field point, respectively. In Figure 

4(a), the excitation position clearly separates two different zones with positive and 

negative structural intensity distribution, indicating two opposite energy flow 

directions. With the increase of frequency, at 39070Hz, a relatively uniform gradient 

of structural intensity distribution can be observed Figure 4(b).  

 
Figure 4 Normalized structural intensity distribution in ABH beam under resonant 

excitation frequencies: (a) 5072Hz; (b) 39070Hz 

 

3.2 Energy Transmission in ABH Beam with Damping Layers 

In principle, complete ABH effect takes place only with the use of the damping 

layers due to the existence of the truncated thickness at the taper. With this in mind, 

the same beam as the one used above but with additional damping layers is 

investigated. Damping layers are bonded over part of the ABH region at the tip.  

Presented in Figure 5 is the structural intensity distribution of the ABH beam with 

damping layers, with results denoted by a black square. For the comparison purpose, 

the results of the ABH beam without damping layers shown in Figure 6 are also 

given here again, marked as a red circle. For convenience, different regions of the 

beams are marked as shadowed areas of different colors. Generally speaking, a 

relatively flat structural intensity distribution is observed within the uniform portion 

of the beam. The trend persists until the entrance of the coating area, starting from 

which a sudden and rapid decrease is produced. At the 5072 Hz, fluctuations 

associated with the structural intensity variation can be observed. When frequency 
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increases, the overall trends will become more uniform and smoother.  

 
Figure 5 Damping layers effect on the normalized structural intensity distributions of 

ABH beam under excitation frequencies: (a) 5072Hz; (b) 39070Hz 

 

4.  CONCLUSIONS 

In this paper, a novel semi-analytical model for power flow and structural intensity 

analysis of an elastically restrained Euler-Bernoulli ABH beam is established. An energy 

formulation is employed for the dynamic description of ABH beams.  Under Rayleigh-

Ritz framework the problem can be solved.  

Numerical examples are presented to validate the proposed model. With the model 

established, power flow and structural intensity analyses of ABH beam without and with 

damping layers are carried out. It can be seen that for the bare ABH beam without 

damping layer,with the frequency increasing, the gradient of the structural intensity 

distribution becomes more uniform and a global increase in the normalized structure 

intensity is observed as compared with its counterpart without damping layers with the 

damping layers covering the tip part of the ABH beam.  

This work establishes a semi-analytical model for the power flow analysis of 

elastically restrained ABH beam for the first time, which can be used for energy 

transmission mechanism study and further optimal design of ABH beam structure.  
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