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ABSTRACT 
A practical method for predicting vibration and structure-borne sound in 
buildings is developed using an extended Modal Strain and Kinetic Energy 
(MSKE) method. The proposed method introduces a complex Young’s Modulus 
for structural materials, a complex bulk modulus and an effective density for the 
acoustical fluid in order to express damping behaviour of the system. This method 
allows for the modal loss factor to be obtained without solving complex eigenvalue 
problems under the assumption that the complex eigenvector can be approximated 
by the real eigenvector. Under the given assumptions, the proposed method 
reduces complexity and computational requirements compared to the traditional 
MSKE method by solving for the scalar pressure rather than the vector quantity 
displacement. The proposed method was experimentally validated in a two-story 
structure made of reinforced concrete. The second floor slab was excited by an 
impact hammer while the driving point acceleration and sound pressure were 
measured in the room below. The building frame and cavity were modeled and 
discretized by a five centimeter rectangular mesh. Accelerance and the sound 
transfer function were calculated and compared to the measured results. In the 
low-frequency region (up to 150 Hz), both calculated results agreed well with the 
measured results. 
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1. INTRODUCTION 

To control noise, vibration and structure-borne sound in buildings, accurate 
prediction methods are necessary. Some numerical methods, such as the Finite Element 
Method (FEM) is one such accurate prediction method. Modal analysis theory based on 
solving generalized eigenvalue problems on a finite element matrix is widely used for 
determining the vibration characteristics (mode shapes and natural frequencies) of the 
building structure. To calculate the frequency response using modal analysis theory, the 
modal loss factor of the system has to be determined. For the structural system, 
comprised of various material components, the Modal Strain Energy (MSE) method 
was proposed [3] to estimate the modal loss factor. The MSE method introduces a 
complex Young’s modulus for the structural materials in order to express the structure’s 
damping behavior.  By the MSE method, approximated values of the modal loss factor 
at each mode are calculated by means of real eigenvectors obtained by solving real 
eigenvalue problems under the assumption that the complex eigenvector can be 
approximated by the real eigenvector.  For structural-acoustic coupling problems which 
take acoustic radiation into consideration, such as floor impact sound or structure-borne 
sound generated by a building’s mechanical equipment, the Modal Strain and Kinetic 
Energy (MSKE) method has been proposed [4] to estimate the modal loss factors. In the 
MSKE method, particle displacement is used as a nodal unknown variable of the finite 
elements in the acoustical region. Acoustical and structural components at the boundary 
between the acoustical and structural regions can be connected directly, because 
displacement is a common nodal unknown variable for the structural-acoustical 
coupling system. Although using displacements as common unknowns helps us to 
construct an FE matrix of the coupling system, as displacements are vector quantities, 
memory consumption will increase rapidly as the acoustical region increases in size.  

In this paper, we propose an extended MSKE method for solving structural-
acoustic coupling systems using sound pressure as the FEM nodal unknowns in the 
acoustical region. The proposed method, including how to calculate the modal loss 
factor, are briefly described along with the experimental validation results.  
 
2.  Theory 
 
2.1 Structural-acoustic coupling system 

Considering a general impact source on a structure with FEM, the equations of 
motion for the un-damped structural-acoustic coupling system are given by: 

��𝐾𝐾𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠
0 𝐾𝐾𝑎𝑎𝑎𝑎

� − 𝜔𝜔2 �𝑀𝑀𝑠𝑠𝑠𝑠 0
𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀𝑎𝑎𝑎𝑎

�� �
𝑢𝑢
𝑝𝑝� = �𝑓𝑓𝑠𝑠

0
�, (1) 

where, 𝐾𝐾𝑠𝑠𝑠𝑠 and 𝐾𝐾𝑎𝑎𝑎𝑎 are the stiffness matrices in the structural and acoustical region, and 
𝑀𝑀𝑠𝑠𝑠𝑠 and 𝑀𝑀𝑎𝑎𝑎𝑎 are the mass matrices in the structural and acoustical region respectively. 
𝑢𝑢 is a nodal displacement vector of the structural component in meters, 𝑝𝑝 is a nodal 
sound pressure vector of the acoustical components in pascals, 𝑓𝑓𝑠𝑠 is a nodal force vector 
applied to the structural region in newtons, and 𝜔𝜔 is the angular frequency in radians per 
second.  

The coupling terms 𝐾𝐾𝑠𝑠𝑠𝑠 and 𝑀𝑀𝑎𝑎𝑎𝑎 have the following relation: 

𝐾𝐾𝑠𝑠𝑠𝑠 = −𝑀𝑀𝑎𝑎𝑎𝑎
𝑡𝑡 , (2) 

where the subscripts s and a indicate variables in the structural or acoustical regions 
respectively. The superscript t indicates the transpose of the matrix.  



Although the frequency response of this system can be obtained by solving a 
linear equation at each frequency, the computational time can be quite lengthy if there 
are a large number of frequencies to be solved. Moreover, if the excitation point is 
changed, all the calculations must be repeated. On the other hand, by using modal 
analysis to obtain the frequency response, the eigenvalue problem needs only be solved 
once. Once eigenvalues and eigenvectors are obtained, the frequency response of the 
structural system can be calculated using less computational time compared to solving a 
linear equation of the system at various individual frequencies. The right-eigenvector, 
obtained by solving the right-eigenvalue problem of Equation 1 (𝑥𝑥 in 𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆), cannot 
diagonalize stiffness and mass matrices, thus the modal analysis cannot be applied to 
structural-acoustic coupling systems when only using the right-eigenvector.  

 
2.2 Left and Right Eigenvector   

Hagiwara [1] introduced the left-eigenvector (𝑦𝑦 in 𝑦𝑦𝑡𝑡𝐴𝐴 = 𝜆𝜆𝑦𝑦𝑡𝑡 ) to form the 
diagonalizable asymmetric matrices of Equation 1. Jianhui [2] derived the left-
eigenvector when Component Mode Synthesis (CMS) is applied to Equation 1. If 
[ 𝑊𝑊𝑠𝑠

𝑡𝑡 𝑊𝑊𝑎𝑎
𝑡𝑡]𝑡𝑡  is the left-eigenvector matrix, and [𝐷𝐷𝑡𝑡𝑉𝑉𝑠𝑠𝑡𝑡 𝑉𝑉𝑎𝑎𝑡𝑡 ]𝑡𝑡  is the right-eigenvector 

matrix, the relation between the left and right-eigenvector is: 

�𝑊𝑊𝑠𝑠
𝑊𝑊𝑎𝑎
� = �𝑉𝑉𝑠𝑠𝐷𝐷𝑉𝑉𝑎𝑎

�, (3) 

where 

[𝐷𝐷] = diag�𝜆𝜆(1), 𝜆𝜆(2),⋯ , 𝜆𝜆(𝑀𝑀)�, (4) 

[𝑉𝑉𝑠𝑠] = �𝜙𝜙𝑠𝑠
(1), 𝜙𝜙𝑠𝑠

(2),⋯ , 𝜙𝜙𝑠𝑠
(𝑀𝑀)� , [𝑉𝑉𝑎𝑎] = �𝜙𝜙𝑎𝑎

(1), 𝜙𝜙𝑎𝑎
(2),⋯ , 𝜙𝜙𝑎𝑎

(𝑀𝑀)�, (5), (6) 

[𝑊𝑊𝑠𝑠] = �𝜓𝜓𝑠𝑠
(1), 𝜓𝜓𝑠𝑠

(2),⋯ , 𝜓𝜓𝑠𝑠
(𝑀𝑀)� , [𝑊𝑊𝑎𝑎] = �𝜓𝜓𝑎𝑎

(1), 𝜓𝜓𝑎𝑎
(2),⋯ , 𝜓𝜓𝑎𝑎

(𝑀𝑀)�, (7), (8) 

𝜆𝜆(𝑖𝑖) is the ith eigenvalue, M is the number of modes, and 𝜙𝜙𝑠𝑠
(𝑖𝑖), 𝜙𝜙𝑎𝑎

(𝑖𝑖), 𝜓𝜓𝑠𝑠
(𝑠𝑠) and 𝜓𝜓𝑎𝑎

(𝑠𝑠) are the 
ith right and left-eigenvector corresponding to the structural and acoustical regions 
respectively. Using the left-eigenvector in Equation 3, the stiffness and mass matrices of 
Equation 1 can become diagonalizable and modal analysis theory can be applied. 

 
2.3 Frequency Response 
 According to modal analysis theory, the frequency response of the system can be 
calculated by Equation 9 below. 

𝑥𝑥𝑟𝑟(𝜔𝜔) or 𝑝𝑝𝑟𝑟(𝜔𝜔) = ∑ 𝜙𝜙𝑟𝑟
(𝑖𝑖)𝜓𝜓𝑞𝑞

(𝑖𝑖)

𝜆𝜆(𝑖𝑖)−𝜔𝜔2+𝑗𝑗𝜆𝜆(𝑖𝑖)𝜀𝜀(𝑖𝑖) 𝑓𝑓(𝜔𝜔)𝑀𝑀
𝑖𝑖=1 , (9) 

where, 𝑥𝑥𝑟𝑟(𝜔𝜔) and 𝑝𝑝𝑟𝑟(𝜔𝜔) are the displacement and sound pressure at degree of freedom 
r obtained when the degree of freedom q is excited by the force 𝑓𝑓(𝜔𝜔), in newtons, at an 
angular frequency 𝜔𝜔 in radians per second. Integer 𝑖𝑖 represents modal order, 𝜙𝜙𝑟𝑟

(𝑖𝑖) is the 
ith right-eigenvector at degree of freedom r, 𝜓𝜓𝑞𝑞

(𝑖𝑖) is the 𝑖𝑖th left-eigenvector at degree of 
freedom q, 𝜆𝜆(𝑖𝑖) is ith eigenvalue, 𝜀𝜀(𝑖𝑖) is ith modal loss factor of the system and j is the 



imaginary unit (√−1). As shown in Equation 9, to calculate the frequency response of 
the system, the modal damping has to first be determined.  

2.3 Extended Modal Strain and Kinetic Energy Method 
In this section, the extended MSKE method to determine the modal loss factor 

for the structural-acoustic coupling system, using sound pressure as the nodal unknowns 
in the acoustic region, is briefly described. To take material damping into account, the 
Young’s modulus E of the structural material, bulk modulus 𝜅𝜅, and density 𝜌𝜌 of the 
acoustical fluid are changed to a complex quantity with their material loss factors 
determined as below: 

𝐸𝐸� ≡ 𝐸𝐸𝑅𝑅 + 𝑗𝑗𝐸𝐸𝐼𝐼 = 𝐸𝐸𝑅𝑅 �1 + 𝑗𝑗 𝐸𝐸𝐼𝐼
𝐸𝐸𝑅𝑅
� = 𝐸𝐸𝑅𝑅(1 + 𝑗𝑗𝜂𝜂𝑠𝑠) where, 𝜂𝜂𝑠𝑠 = 𝐸𝐸𝐼𝐼 𝐸𝐸𝑅𝑅⁄ , (10), (11) 

𝜅̂𝜅 ≡ 𝜅𝜅𝑅𝑅 + 𝑗𝑗𝜅𝜅𝐼𝐼 = 𝜅𝜅𝑅𝑅 �1 + 𝑗𝑗 𝜅𝜅𝐼𝐼
𝜅𝜅𝑅𝑅
� = 𝜅𝜅𝑅𝑅(1 + 𝑗𝑗𝜂𝜂𝑎𝑎) where, 𝜂𝜂𝑎𝑎 = 𝜅𝜅𝐼𝐼 𝜅𝜅𝑅𝑅⁄ , (12), (13) 

𝜌𝜌� ≡ 𝜌𝜌𝑅𝑅 + 𝑗𝑗𝑗𝑗𝐼𝐼 = 𝜌𝜌𝑅𝑅 �1 + 𝑗𝑗 𝜌𝜌𝐼𝐼
𝜌𝜌𝑅𝑅
� = 𝜌𝜌𝑅𝑅(1 + 𝑗𝑗𝜒𝜒𝑎𝑎) where, 𝜒𝜒𝑎𝑎 = 𝜌𝜌𝐼𝐼 𝜌𝜌𝑅𝑅⁄ , (14), (15) 

The subscript R and I indicate the real and imaginary parts of the complex quantity and 
the hat symbol denotes a complex quantity. 𝜂𝜂𝑠𝑠 represents the material loss factor of the 
structural component, 𝜂𝜂𝑎𝑎 and 𝜒𝜒𝑎𝑎 are the loss factors of the acoustic fluid. The damping 
factor 𝜂𝜂𝑎𝑎  and 𝜒𝜒𝑎𝑎  can be calculated from the characteristic impedance and sound 
propagation constant of the acoustic fluid [5]. If the acoustic region is filled with air, 
these damping factors  𝜂𝜂𝑎𝑎 and 𝜒𝜒𝑎𝑎 are small. The stiffness and mass matrices are also 
changed to complex quantities as below: 

�𝐾𝐾�𝑠𝑠𝑠𝑠� ≡ [𝐾𝐾𝑠𝑠𝑠𝑠](1 + 𝑗𝑗𝜂𝜂𝑠𝑠), (16) 

�𝐾𝐾�𝑎𝑎𝑎𝑎� ≡
1

1+𝑗𝑗χ𝑎𝑎
[𝐾𝐾𝑎𝑎𝑎𝑎] = 1

1+𝜒𝜒𝑎𝑎2
[𝐾𝐾𝑎𝑎𝑎𝑎](1 − 𝑗𝑗𝜒𝜒𝑎𝑎), (17) 

�𝑀𝑀�𝑎𝑎𝑎𝑎� ≡
1

1+𝑗𝑗𝑗𝑗𝑎𝑎
[𝑀𝑀𝑎𝑎𝑎𝑎] = 1

1+𝜂𝜂𝑎𝑎2
[𝑀𝑀𝑎𝑎𝑎𝑎](1 − 𝑗𝑗𝜂𝜂𝑎𝑎), (18) 

The generalized right-eigenvalue problem (matrix form) is represented in 
Equation 19. 

�𝐾𝐾
�𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠
0 𝐾𝐾�𝑎𝑎𝑎𝑎

� �𝑉𝑉
�𝑠𝑠
𝑉𝑉�𝑎𝑎
� = �

𝑀𝑀𝑠𝑠𝑠𝑠 0
𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀�𝑎𝑎𝑎𝑎

� �𝑉𝑉
�𝑠𝑠
𝑉𝑉�𝑎𝑎
� �𝐷𝐷��. (19) 

The eigenvalue and left and right eigenvector also become complex quantities. 

𝜆̂𝜆(𝑖𝑖) ≡ 𝜆𝜆(𝑖𝑖)�1 + 𝑗𝑗𝜂𝜂(𝑖𝑖)�, (20) 

𝜙𝜙�(𝑖𝑖) ≡ 𝜙𝜙𝑅𝑅
(𝑖𝑖) + 𝑗𝑗𝜙𝜙𝐼𝐼

(𝑖𝑖) , 𝜓𝜓�(𝑖𝑖) ≡ 𝜓𝜓𝑅𝑅
(𝑖𝑖) + 𝑗𝑗𝑗𝑗𝐼𝐼

(𝑖𝑖). (21), (22) 

The Rayleigh quotient of the ith mode is represented in Equation 23. 



𝜆̂𝜆(𝑖𝑖) = �
𝜓𝜓�𝑠𝑠

(𝑖𝑖)

𝜓𝜓�𝑎𝑎
(𝑖𝑖)�

𝑡𝑡

�𝐾𝐾
�𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠
0 𝐾𝐾�𝑎𝑎𝑎𝑎

� �
𝜙𝜙�𝑠𝑠

(𝑖𝑖)

𝜙𝜙�𝑎𝑎
(𝑖𝑖)� �

𝜓𝜓�𝑠𝑠
(𝑖𝑖)

𝜓𝜓�𝑎𝑎
(𝑖𝑖)�

𝑡𝑡

�
𝑀𝑀𝑠𝑠𝑠𝑠 0
𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀�𝑎𝑎𝑎𝑎

� �
𝜙𝜙�𝑠𝑠

(𝑖𝑖)

𝜙𝜙�𝑎𝑎
(𝑖𝑖)�� . (23) 

Here, we introduce the assumption that the complex left and right eigenvector 
can be approximated by real left and right eigenvectors obtained by solving real 
eigenvalue problems, i.e.,  

𝜓𝜓�(𝑖𝑖) ≈ 𝜓𝜓(𝑖𝑖) , 𝜙𝜙�(𝑖𝑖) ≈ 𝜙𝜙(𝑖𝑖) (24), (25) 
The Rayleigh quotient is developed using Equations 16 through 18, which 

results in  

𝜆𝜆(𝑖𝑖)�1 + 𝑗𝑗𝜀𝜀(𝑖𝑖)� ≈
𝑘𝑘(𝑖𝑖)−𝜒𝜒𝑎𝑎2𝑘𝑘�𝑎𝑎𝑎𝑎

(𝑖𝑖)+𝑗𝑗�𝜂𝜂𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠
(𝑖𝑖)−𝜒𝜒𝑎𝑎𝑘𝑘�𝑎𝑎𝑎𝑎

(𝑖𝑖)�

𝑚𝑚(𝑖𝑖)−𝑗𝑗𝜂𝜂𝑎𝑎2 𝑚𝑚�𝑎𝑎𝑎𝑎
(𝑖𝑖)−𝑗𝑗𝜂𝜂𝑎𝑎 𝑚𝑚�𝑎𝑎𝑎𝑎

(𝑖𝑖) , (26) 

where 

𝑘𝑘𝑠𝑠𝑠𝑠
(𝑖𝑖) = �𝜓𝜓𝑠𝑠

(𝑖𝑖)�
𝑡𝑡
[𝐾𝐾𝑠𝑠𝑠𝑠]�𝜙𝜙𝑠𝑠

(𝑖𝑖)� , 𝑚𝑚𝑠𝑠𝑠𝑠
(𝑖𝑖) = �𝜓𝜓𝑠𝑠

(𝑖𝑖)�
𝑡𝑡
[𝑀𝑀𝑠𝑠𝑠𝑠]�𝜙𝜙𝑠𝑠

(𝑖𝑖)�, (27), (28) 

𝑘𝑘𝑠𝑠𝑠𝑠
(𝑖𝑖) = �𝜓𝜓𝑠𝑠

(𝑖𝑖)�
𝑡𝑡
[𝐾𝐾𝑠𝑠𝑠𝑠]�𝜙𝜙𝑎𝑎

(𝑖𝑖)� , 𝑚𝑚𝑎𝑎𝑎𝑎
(𝑖𝑖) = �𝜓𝜓𝑎𝑎

(𝑖𝑖)�
𝑡𝑡
[𝑀𝑀𝑎𝑎𝑎𝑎]�𝜙𝜙𝑠𝑠

(𝑖𝑖)�, (29), (30) 

𝑘𝑘𝑎𝑎𝑎𝑎
(𝑖𝑖) = �𝜓𝜓𝑎𝑎

(𝑖𝑖)�
𝑡𝑡
[𝐾𝐾𝑎𝑎𝑎𝑎]�𝜙𝜙𝑎𝑎

(𝑖𝑖)� , 𝑚𝑚𝑎𝑎𝑎𝑎
(𝑖𝑖) = �𝜓𝜓𝑎𝑎

(𝑖𝑖)�
𝑡𝑡
[𝑀𝑀𝑎𝑎𝑎𝑎]�𝜙𝜙𝑎𝑎

(𝑖𝑖)�, (31), (32) 

𝑘𝑘(𝑖𝑖) = 𝑘𝑘𝑠𝑠𝑠𝑠
(𝑖𝑖) + 𝑘𝑘𝑠𝑠𝑠𝑠

(𝑖𝑖) + 𝑘𝑘𝑎𝑎𝑎𝑎
(𝑖𝑖) , 𝑚𝑚(𝑖𝑖) = 𝑚𝑚𝑠𝑠𝑠𝑠

(𝑖𝑖) + 𝑚𝑚𝑎𝑎𝑎𝑎
(𝑖𝑖) + 𝑚𝑚𝑎𝑎𝑎𝑎

(𝑖𝑖), (33), (34) 

1
1+𝜒𝜒𝑎𝑎2

𝑘𝑘𝑎𝑎𝑎𝑎
(𝑖𝑖) = 𝑘𝑘�𝑎𝑎𝑎𝑎

(𝑖𝑖) , 1
1+𝜂𝜂𝑎𝑎2

𝑚𝑚𝑎𝑎𝑎𝑎
(𝑖𝑖) = 𝑚𝑚�𝑎𝑎𝑎𝑎

(𝑖𝑖). (35), (36) 

𝑘𝑘(𝑖𝑖) and 𝑚𝑚(𝑖𝑖) represent the ith modal stiffness and modal mass respectively.  Finally, the 
ith eigenvalue and modal loss factor are obtained by the following equations. 

𝜆𝜆(𝑖𝑖) =
𝑘𝑘(𝑖𝑖)

𝑚𝑚(𝑖𝑖) ∙
1 − �𝜂𝜂𝑠𝑠𝑆𝑆𝑠𝑠

(𝑖𝑖) − 𝜒𝜒𝑎𝑎𝑆𝑆𝑎𝑎
(𝑖𝑖)�𝜂𝜂𝑎𝑎𝑅𝑅𝑎𝑎

(𝑖𝑖) − 𝜂𝜂𝑎𝑎2𝑅𝑅𝑎𝑎
(𝑖𝑖) − 𝜒𝜒𝑎𝑎2𝑆𝑆𝑎𝑎

(𝑖𝑖) + 𝜂𝜂𝑎𝑎2𝑅𝑅𝑎𝑎
(𝑖𝑖)𝜒𝜒𝑎𝑎2𝑆𝑆𝑎𝑎

(𝑖𝑖)

�1 − 𝜂𝜂𝑎𝑎2𝑅𝑅𝑎𝑎
(𝑖𝑖)�

2
+ �𝜂𝜂𝑎𝑎𝑅𝑅𝑎𝑎

(𝑖𝑖)�
2 , (37) 

𝜀𝜀(𝑖𝑖) =
𝜂𝜂𝑎𝑎𝑅𝑅𝑎𝑎

(𝑖𝑖) + �𝜂𝜂𝑠𝑠𝑆𝑆𝑠𝑠
(𝑖𝑖) − 𝜒𝜒𝑎𝑎𝑆𝑆𝑎𝑎

(𝑖𝑖)� + 𝜒𝜒𝑎𝑎2𝑆𝑆𝑎𝑎
(𝑖𝑖)𝜂𝜂𝑎𝑎𝑅𝑅𝑎𝑎

(𝑖𝑖) + �𝜂𝜂𝑠𝑠𝑆𝑆𝑠𝑠
(𝑖𝑖) − 𝜒𝜒𝑎𝑎𝑅𝑅𝑎𝑎

(𝑖𝑖)�𝜂𝜂𝑎𝑎2𝑅𝑅𝑎𝑎
(𝑖𝑖)

1 − �𝜂𝜂𝑠𝑠𝑆𝑆𝑠𝑠
(𝑖𝑖) − 𝜒𝜒𝑎𝑎𝑆𝑆𝑎𝑎

(𝑖𝑖)�𝜂𝜂𝑎𝑎𝑅𝑅𝑎𝑎
(𝑖𝑖) − 𝜂𝜂𝑎𝑎2𝑅𝑅𝑎𝑎

(𝑖𝑖) − 𝜒𝜒𝑎𝑎2𝑆𝑆𝑎𝑎
(𝑖𝑖) + 𝜂𝜂𝑎𝑎2𝑅𝑅𝑎𝑎

(𝑖𝑖)𝜒𝜒𝑎𝑎2𝑆𝑆𝑎𝑎
(𝑖𝑖)

, (38) 

 

𝑆𝑆𝑠𝑠
(𝑖𝑖) =

𝑘𝑘𝑠𝑠𝑠𝑠
(𝑖𝑖)

𝑘𝑘(𝑖𝑖) ,  𝑆𝑆𝑎𝑎
(𝑖𝑖) =

𝑘𝑘�𝑎𝑎𝑎𝑎
(𝑖𝑖)

𝑘𝑘(𝑖𝑖) ,  𝑅𝑅𝑎𝑎
(𝑖𝑖) =

𝑚𝑚�𝑎𝑎𝑎𝑎
(𝑖𝑖)

𝑚𝑚(𝑖𝑖) . (39), (40), (41) 

Equations 39 and 40 show the contribution ratios of structural and acoustical 
components to the ith modal stiffness values. Equation 41 also represents the 
contribution ratio of the acoustical component to the ith modal mass. In Equation 37, the 
term 𝑘𝑘(𝑖𝑖)/𝑚𝑚(𝑖𝑖) corresponds to the eigenvalue obtained by the real eigenvalue problem. 
Therefore, the eigenvalue calculated by Equation 37 becomes a slightly small value 



compared to the real eigenvalue. By considering 𝑆𝑆s
(𝑖𝑖),  𝑆𝑆a

(𝑖𝑖) and  𝑅𝑅a
(𝑖𝑖) take values between 

zero to one and 𝜂𝜂𝑠𝑠 , 𝜂𝜂𝑎𝑎  and χ𝑎𝑎  ≪ 1 , their product and squared values (𝜂𝜂𝑠𝑠𝜂𝜂𝑎𝑎, 𝜂𝜂𝑎𝑎𝜒𝜒𝑎𝑎,
𝜂𝜂𝑠𝑠2, 𝜂𝜂𝑎𝑎2, 𝜒𝜒𝑎𝑎2) can be considered negligible. Therefore, the 𝑖𝑖𝑡𝑡ℎ eigenvalue and modal loss 
factor can be simplified to: 

𝜆𝜆(𝑖𝑖) ≈
𝑘𝑘(𝑖𝑖)

𝑚𝑚(𝑖𝑖), (42) 

𝜀𝜀(𝑖𝑖) ≈ 𝜂𝜂𝑘𝑘
(𝑖𝑖) + 𝜂𝜂𝑚𝑚

(𝑖𝑖), (43) 

where 

𝜂𝜂𝑘𝑘
(𝑖𝑖) = 𝜂𝜂s𝑆𝑆s

(𝑖𝑖) − 𝜒𝜒a𝑆𝑆a
(𝑖𝑖) , 𝜂𝜂𝑚𝑚

(𝑖𝑖) = 𝜂𝜂a𝑅𝑅a
(𝑖𝑖). (44), (45) 

The subscripts k and m indicate stiffness and mass. Equation 42 implies that if the 
material loss factor is small, eigenvalues are not changed to the real eigenvalue (𝑘𝑘(𝑖𝑖)/
𝑚𝑚(𝑖𝑖)). Equation 43 implies that the modal loss factor can be obtained from the same 
form as the conventional MSKE method [4]. In this paper, we use the Equation 42 and 
43 to calculate the frequency response. 
 

3.  Experimental Validation 
 
3.1 Structural Frame 

The proposed method was experimentally validated. The experiment was carried 
out on a two-story reinforced concrete frame structure. Plan and section views are 
shown in Fig. 1. Excitation point on the second floor and receiver point in Room 1 are 
also shown. For the numerical simulation, the building was discretized by a 5 cm 
rectangular mesh. Note that only the magenta color walls and slabs shown in Figure 1 
and 2 are modeled. The degrees of freedom for the structural region was 605,967 and 
the acoustical region was 499,041. The material parameter used in the calculation is 
shown in Table 1. Component Mode Synthesis [2] was applied to solve the eigenvalue 
problem given in Equation 1. The number of eigenvalues and eigenvectors for the 
structural region was 128 and the acoustical region was 998. The frequency response 
between 10 - 500 Hz was calculated using Equation 9. The sound pressure in Room 1 
was measured and calculated when the second floor concrete slab was excited by an 
impact hammer. Driving point acceleration was also measured and calculated. In this 
paper, all calculations were implemented using MATLAB R2017b. 



  
 

Fig. 1 Wall type frame structure. Section (Above) 
and plan (Bottom) views. 

Fig. 2 3D model used to carry out calculation 

 
Table 1. Material properties used in the calculation 

Material E / 𝜅𝜅 
[Pa] 

𝜌𝜌 
[kg/m3] 

𝜈𝜈 
[ - ] 

𝜂𝜂 
[ - ] 

𝜒𝜒 
[ - ] 

Reinforced 
concrete 3.2E10 2400 0.17 0.02 - 

Air 1.4E5 1.2 - 0.001 −0.001 
 
3.2 Comparison between measured and calculated results  
 
3.2.1 Accelerance on the slab 

The measured and calculated driving point accelerance is shown in Figure 3. Up 
to 150 Hz, both results appear to reasonably agree, but above 150 Hz, peak amplitude at 
resonance frequencies varies between the measured and calculated results. Since peak 
amplitude is determined by the modal loss factor, the estimated modal loss factor is 
lower than the actual value. In principle, the upper bound of the modal loss factor 
obtained by the MSKE method corresponds to a maximum material loss factor used in 
the calculation. Therefore, another damping factor appears to contribute to the material 
loss factor in this case.  

 
3.2.2 Sound pressure in Room 1 

The measured and calculated transfer function of the sound pressure in pascals 
per newton is shown in Figure 4. Up to 200 Hz, the overall characteristics of the 
measured and calculated results agree fairly well, though the peak amplitude shows to 
be lower than the measured results. This discrepancy may be due to the loss factor of air. 
For further accuracy, the actual loss factor of air should be considered. Above 200 Hz, 
there are various peaks in the frequency response making it is difficult to trace each 
mode. 1/3 octave band averaged values are also shown in Figure 4, which show fair 
agreement above 200 Hz. 
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Fig. 3 Driving point accelerance on the 2nd floor slab. 

 

 
 
4.  CONCLUSIONS 
 This paper proposed and described an extended MSKE method to solve a 
building structural-acoustic coupling system using sound pressure as nodal unknown 
variables in the acoustical region. Experimental validation was carried out in a two-
story structure. The sound pressure in Room 1 was measured and calculated when the 
second floor concrete slab was excited by an impact hammer. Driving point acceleration 
was also measured and calculated. Comparing the measured and calculated results, 
overall frequency characteristics showed similarities below 150Hz. Above 150Hz, peak 
amplitudes, particularly accelerance results, showed fair differences. This discrepancy 
could be caused by the damping property of reinforced concrete. Further improvement 
is planned for focusing on the measurement of the damping properties for actual 
conditions.  
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Fig. 4 Normalized Sound Pressure (sound pressure / force) in Room 1. 
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