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ABSTRACT

It is known that hydrodynamic noise can be a major contribution to the total
sound radiated by a ship. It is in part attributed to the interaction between turbulent
eddies with appendages and marine propeller blades. Because hydrodynamics is
associated with very low Mach numbers, direct noise computation methods are too
expensive. Other approaches must be chosen, based on acoustic analogies which
consist first in modeling the incompressible turbulent flow and then in computing the
noise radiated by this flow. We focus on Lighthill’s wave equation, solved using the
free space Green function or a tailored Green’s function in presence of an arbitrary
geometry. Unlike many studies from the literature where the impact of the chosen
turbulent model is evaluated over a semi-infinite plate, the objective of this study is
to evaluate the impact of the chosen Green function on the predicted broadband flow
noise for a fixed semi-empirical turbulence model. The impact of the chosen tailored
Green function on the radiated noise spectra and directivity diagrams is evaluated
considering various analytical and numerical tailored Green’s functions.
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1. INTRODUCTION

Hydrodynamic noise is generally generated by a concentrated region of turbulence
surrounding a solid boundary or by a flow instability. The rewriting of the Navier-Stokes
and continuity equations into an inhomogeneous wave equation is the starting point of
acoustic analogies. The common method of resolution of these analogies is based on
the formalism of the Green functions. Thus, the computation is, in general, done in two
independent steps. The first one is the modeling of the turbulent flow in the entire region
of turbulence and the second one is the computation of the Green function.

Numerical simulations of the turbulent flow are too expensive for the usual
characteristics of hydrodynamic noise - low Mach number and high Reynolds number
- and there are very little experimental data available. However, under these latter
conditions, the total noise radiated by a foil would be dominated by the edge noise
produced by the turbulence fluctuations which pass over the edges and are scattered in the
far field. These can be the turbulent boundary layer fluctuations for trailing edge noise,
or the inflow turbulence for leading edge noise. In this context, the diffraction theory,
which consider the flow passing over a semi-infinite plate, is widely used to compute
edge noise [1–3]. The impact of the real geometry is then lost because this theory does
not easily extend to an arbitrary Green’s function. On the contrary, volumic formulations,
based for example on the work of Doak [4], allow us to use an exact Green’s function
by canceling surface integrals. Unlike many studies which investigate the impact of the
turbulence model [5, 6], the objective of this work is to present a semi-analytical model
allowing the investigation of the impact of the Green function, which can be determined
analytically or numerically. This model will be applied to trailing edge noise prediction
in air and compared to either the diffraction theory or experimental data.

First, we will derive the broadband flow induced noise prediction model in Section 2.
Then we will introduce the tailored Green function in Section 3 and the semi-analytical
turbulence model in Section 4. Finally, radiated noise spectra and directivity diagrams
obtained with the diffraction theory and the volumic formulation are shown in Section 5.

2. BROADBAND FLOW INDUCED NOISE PREDICTION MODEL

2.1. Derivation of the general equation

In the context of hydrodynamic noise studies, the flow is supposed to be
incompressible, at high Reynolds and low Mach numbers. Neglecting cavitation
and vibration, the Lighthill equation can be written for the pressure in the frequency
domain under the following form:

(∇2 + k2
0) p̂(x, ω) = −

∂2T̂i j

∂xi∂x j
, (1)

where k0 = ω/c0 is the acoustic wave-number, with ω the angular frequency and c0 the
speed of sound, T̂i j = ρ0ûiu j is the incompressible Lighthill tensor, ρ0 is the fluid density,
ui is the flow velocity and the superscript̂denotes the frequency Fourier transform which
is defined for a function f by:

f̂ (ω) =
1

2π

∫ ∞

−∞

f (t)e−iωtdt. (2)



Using the Green function formalism in presence of hard wall surfaces, the integral
formulation of the inhomogeneous wave equation, or Green’s formula, can be derived [7]:

p̂(x, ω) = −

∫
V

∂2T̂i j

∂yi∂y j
Ĝ(x, y, ω)d3y

+

∮
Σ

(
p̂(y, ω)∇Ĝ(x, y, ω) − Ĝ(x, y, ω)∇ p̂(y, ω)

)
· ndS (y),

(3)

where Σ and V are respectively the obstacle and the turbulence volume, n is taken in the
outward direction from the solid and the Green function Ĝ is the causal solution at x =

(x1, x2, x3) of the wave equation generated by an impulsive point source at y = (y1, y2, y3),
that is defined by:

(∇2 + k2
0)Ĝ(x, ω) = δ(x − y). (4)

The Green function can be chosen in order to take into account the boundaries’ geometry.
A solution ĜT = Ĝ0 + Ĝs, with Ĝ0 the Green function in free space and Ĝs the scattered
one, of Equation 4 that satisfies the rigid wall boundary condition

∇ĜT (x, y, ω) · n = 0, ∀y ∈ Σ, (5)

is called a tailored Green’s function to Σ and can be computed independently of the flow. If
a tailored Green’s function is chosen in Equation 3 and if the wall boundaries are supposed
rigid such that:

∇ p̂(y, ω) · n = 0, ∀y ∈ Σ, (6)

the surface integral vanishes and the Doak formula [4] is obtained:

p̂(x, ω) = −

∫
V

∂2T̂i j

∂yi∂y j
ĜT (x, y, ω)d3y. (7)

At this point, no hypothesis has been made on the geometry of the solid boundaries. In
order to compute the far-field noise it is then necessary to evaluate both the tailored Green
function and the source term separately.

2.2. The diffraction theory for edge noise prediction

Another class of prediction models for broadband edge noise, such as the one
derived by Chase [8] and Chandiramani [1], consider a semi-infinite rigid plate. In this
formulation, the calculation of the edge noise is formulated as a diffraction problem of
the free field hydrodynamic pressure p̂I that would be produced by the same turbulent
flow if the surface were absent [3]. The governing equation of the diffraction theory is
then [3] :

p̂(x, ω) = −

∮
Σ

ĜT (x, y, ω)∇ p̂I(y, ω) · ndS (y)

= −

∫ 0

−∞

∫ ∞

−∞

[
Ĝs(x, y, ω)

] ∂ p̂I

∂y2
(y, ω)dy1dy3,

(8)

where
[
Ĝs(x, y, ω)

]
is the jump in the value of Ĝs across the half-plane and the coordinate

system is defined in Figure 1. Note that
[
Ĝ0

]
vanishes so the only contribution is from



Figure 1: Coordinates for trailing edge noise prediction.

the scattered part of the Green function. Contrary to Equation 3, the pressure gradient
in the surface integral is not zero because p̂I is not the wall pressure. The presence
of the turbulence volume is only accounted for in the computation of the pressure p̂I

which means that the direct component of the radiated noise is neglected [3]. This
formulation is widely used because it combines low computation cost and good agreement
with experimental data. It is therefore considered as a benchmark in this study. To that
end, we have to start by deriving the equations for the noise spectrum in both approaches
under the very same assumptions. Also, we will apply it to the trailing edge noise
prediction only. The derivations relative to the diffraction theory will be denoted as
surfacic approaches whereas the derivations relative to the Doak equation will be denoted
as volumic approaches.

2.3. Power spectral density of acoustic pressure for mean-shear turbulence

In order to establish a far field noise prediction model for an arbitrary geometry, we
look for a comparison between the volumic formulation (Equation 7), and the surfacic
formulation (Equation 8). It is then necessary to use the same turbulence model in both
formulations. In trailing edge noise study, it is usual [9, 10] to decompose the velocity
field into a mean component Ui and a fluctuation u′i such that ui = Ui + u′i . Also, it is
common to consider that only the transverse mean shears ∂U1/∂y2 is non zero and to
neglect second order fluctuation terms. These assumptions yield [10]

∂2T̂i j

∂yi∂y j
= 2ρ0

∂U1

∂y2

∂û′2
∂y1

, (9)



so that Equation 7 can be written :

p̂(x, ω) = −

∫
V

2ρ0
∂U1

∂y2

∂û′2
∂y1

ĜT (x, y, ω)d3y. (10)

In this study V corresponds to the turbulent boundary layers on the pressure and suction
sides. By integrating by part, we can transfer the y1 derivative to the Green function:

p̂(x, ω) = −

∫
V

2ρ0û′2(y, ω)
∂U1

∂y2

∂ĜT

∂y1
d3y. (11)

Considering chordwise and spanwise mean shear as negligible, Equation 11 remains valid
for an arbitrary geometry. The power spectral density of the volumic formulation given
by Equation 11 reads:

S (V)
pp (x, ω) = 〈 p̂(x, ω) p̂∗(x, ω)〉

=

∫
V(y)

∫
V(z)

4ρ2
0φ̂22(y, z, ω)

∂U1

∂y2

∂U1

∂z2

∂ĜT

∂y1
(x, y, ω)

∂Ĝ∗T
∂z1

(x, z, ω)d3yd3z,
(12)

where φ̂22(y, z, ω) = 〈û′2(y, ω)û′∗2 (z, ω)〉 is the upwash velocity spectrum and where the
superscript V stands for volumic. On the other hand, the power spectral density of the
surfacic formulation spectrum has been derived by Chase [2] for a half-infinite plane,

S (S )
pp (x, ω) =

L sin2(θx/2) sin(ψx)
2πc0|x|2

∫ ∞

−∞

φ̃pp(k1, k3 = 0, ω)
|k1|

dk1, (13)

where L is the airfoil span, θx and ψx are defined in Figure 1, and φ̃pp is the wall pressure
spectrum. The wall pressure spectrum can be determined for instance from the semi-
analytical Blake-TNO model [9, 10] which expresses φ̃pp as a function of φ̃22. The space
Fourier transform of a function ĝ(r1, r3, ω) is defined by :

g̃(k1, k3, ω) =
1

4π2

∫ ∞

−∞

ĝ(r1, r3, ω)e−i(k1r1+k3r3)dr1dr3. (14)

In order to compare both approaches, we need to derive a turbulence model that can be
expressed in either the Fourier and the physical space since S (V)

pp depends on φ̂22 while S (S )
pp

depends on φ̃pp. Note that in the diffraction theory it is the jump of the value of ĜS that
matters, whereas in the volumic approach it is the derivative of ĜT with respect to y1, as
investigated in Section 5.

3. ANALYTICAL TAILORED GREEN’S FUNCTIONS

The determination of a tailored Green’s function to a given geometry is of great
importance in the volumic formulation. It can be obtained, a priori and independently
of the turbulent flow simulation, numerically for complex geometries or analytically
for simple ones and in the compact approximation [3]. In the acoustic far field and
considering a source near the edge, the Green’s function tailored to the half-plane
(x1 < 0, x2 = 0) is [11] :

ĜHP(x, y, ω) =
−eik0 |x−y3i3 |

4π|x − y3i3|
−

√
k0rx sin(θx/2)√ry sin(θy/2)

π
√

2πi|x − y3i3|
3/2

eik0 |x−y3i3 |, k0|y| � 1, (15)



where x = (Rx, θx, ψx) = (rx, θx, x3) and y = (Ry, θy, ψy) = (ry, θy, y3) are respectively the
receiver and the source position expressed in the spherical and cylindrical coordinates
described in Figure 1. The term √ry sin(θy/2) is often denoted ϕ∗(y) and can be
assimilated to the velocity potential of incompressible flow around the edge [3].
Howe [12] extended this Green function to a finite chord profile by considering the
multiple scattering between waves diffracted by both the leading and trailing edges :

ĜMS (x, y, ω) = ĜHP(x, y, ω) + ĜLE(x, y, ω) + ĜT E(x, y, ω),

ĜLE =

√
k0 sinψxϕ

∗(y)eik0(|x′ |+c sinψx)

iπ3/2|x|(1 + e2ik0c sinψx/2πik0c sinψx)
F


√

k0c sinψx cos2(θx/2)
π

 ,
ĜT E =

−ϕ∗(y)eik0(|x|+2c sinψx)

π2
√

2ic|x|(1 + e2ik0c sinψx/2πik0c sinψx)
F

2
√

k0c sinψx sin2(θx/2)
π

 ,
(16)

where ĜHP is the Green’s function given by Equation 15, c is the chord of the plate and
F (x) = g(x) + i f (x) is the Fresnel auxiliary function with

f (x) =
1 + 0.926x

2 + 1.792x + 3.104x2 ,

g(x) =
1

2 + 4.142x + 3.492x2 + 6.670x3 .

(17)

These two Green’s functions are essential in the diffraction theory. Because they both
depend on the source position y in the same way, Howe [12] expressed the power spectral
density based on the multiple scattering Green’s function as:

S (S )
pp,MS (x, ω) =

∣∣∣∣∣∣ĜMS (x, y, ω)

ĜHP(x, y, ω)

∣∣∣∣∣∣
2

S (S )
pp,HP(x, ω), (18)

with S (S )
pp,HP the power spectral density based on the half plane Green’s function.

Furthermore, by applying the half plane Green function in the volumic formulation, we
obtain the model originally developed by Ffowcs Williams and Hall [13] for trailing edge
noise prediction.

4. SEMI-ANALYTICAL TURBULENCE MODEL

In order to compare both approaches, we have to ensure that the same expression for
the upwash velocity spectrum is used. Thus, a simplified model is built for homogeneous
and isotropic boundary layer scaled by a XFoil simulation over a NACA 0012 profile.
The starting point is the Blake-TNO model [10], considering an homogeneous turbulence
only in the directions e1 and e3 :

φ̃22(k1, y2, z2, k3, ω) = u′22 L2(y2)δ(y2 − z2)φ̃(1,3)
22 (k1, k3)φm(ω − Uck1) (19)

where φ̃(1,3)
22 (k1, k3) is the anisotropic von Kármán spectrum [10], u′22 is the variance of

the turbulence fluctuations and φm is the moving axis spectrum [14]. In order to express



the upwash velocity spectrum in the physical space, we look for a separable form for
φ̃(1,3)

22 (k1, k3) which is possible for an isotropic turbulence. Integrating over k3 yields [15]:

φ̃(1)
22 (k1) =

∫ ∞

−∞

φ̂(1,3)
22 (k1, k3)dk3 =

4
15ke

√
π

Γ (11/6)
Γ (7/3)

1 + 8/3 (k1/ke)2(
1 + (k1/ke)2

)(11/6) , (20)

where ke is the energy bearing wavenumber. Then, under the frozen turbulence
assumption and assuming an exponential decay with respect to the separation [14], the
von Kármán spectrum can be expressed in the physical space by

φ̂(1)
22 (r1, ω) =

∫ ∞

−∞

φ̃(1)
22 (k1)φm(ω − Uck1)e−ik1r1dk1

=

∫ ∞

−∞

φ̃(1)
22 (k1)e−γk1r1δ(ω − Uck1)e−ik1r1dk1

=
φ̃(1)

22 (ω/Uc)
Uc

e−iωr1/Uce−γωr1/Uc ,

(21)

where γ is an empirical parameter of order 0.2 to 0.3 and ri = yi − zi. When γω/Uc is
sufficiently high, φ̂(1)

22 (r1, ω) ≈ L1(ω)δ(r1) with L1 the longitudinal integral length scale
defined by :

L1(ω) =

∫ ∞

0
φ̂(1)

22 (r1, ω)dr1 =
φ̃(1)

22 (ω/Uc)
ω

1
(γ + i)

. (22)

In the transverse direction, we assume an homogeneous turbulence and a Gaussian
correlation function such as defined by Blake [16] :

φ̂(3)
22 (r3, ω) = e−(y3−z3)2/λ2

3 ≈ L3(ω)δ(r3), (23)

with,

L3(ω) =

∫ ∞

0
φ̂(3)

22 (r3, ω)dr3 =

√
π

2
|λ3|, (24)

where λ3 is a transverse correlation length scale given by Corcos [17] for a boundary-layer
over a rough surface :

λ3 = 1.4
Uc

ω
. (25)

The Fourier transform of R(3)
22 yields to the transverse velocity spectrum :

φ̃(3)
22 (k3) =

λ3

2
√
π

e−(λ3k3)2/4. (26)

Finally, for an homogeneous and isotropic turbulence

φ̂22(r1, y2, z2, r3, ω) = u′22 L2(y2)δ(r2)L1(ω)δ(r1)L3(ω)δ(r3), (27)

and

φ̃22(k1 = ω/Uc, y2, z2, k3, ω) = u′22 L2(y2)δ(r2)
φ̃(1)

22 (ω/Uc)
Uc

φ̃(3)
22 (k3). (28)

The main advantage of this simplified model is that it can be expressed in the space
domain to be used in Equation 12 and in the Fourier domain to be used in Equation 13.
Note that the dependence of φ̃22 on k3 is different in Equations 19 and 28.



Figure 2: Sound pressure level (dB/Hz) for a receiver above the trailing edge at rx =

1.22 m at mid-span (θx = ψx = π/2) and calculated using the surfacic formulation using
two turbulence models for the half plane Green function and measured of Stalnov et al.
[10].

5. RESULTS

5.1. Impact of the isotropic assumption

The model derived by Chase [8] and described by Equation 13 has been implemented
and applied to a NACA 0012 profile. The wall pressure spectrum is described by two
models that we want to compare : the Blake-TNO model for an anisotropic turbulence,
known to show good agreement with measurements [9,10], and our simplified turbulence
model which can be expressed in the physical space. The boundary layers parameters
are obtained with a XFoil simulation in accordance with Lee [9] and Stalnov et al. [10].
The measurements were performed by Stalnov et al. for a NACA 0012 of chord c = 0.2
m and span L = 0.45 m, at zero angle of attack for various values of the mean velocity.
The receivers are placed on an arc in the mid-span plane at a distance R = 1.22m from
the trailing edge. Figure 2 shows that the SPL obtained with the anisotropic turbulence
model is in better agreement with the measurements at low frequencies, and that both
models yield similar results at high frequencies.

5.2. Comparison between surfacic and volumic approaches

The volumic approach presented in this document, unlike the surfacic approach,
makes more convenient the use of an arbitrary Green’s function. For validation purposes,
we chose here to consider the half plane and the multiple scattering Green functions
respectively described by Equation 15 and Equation 16, into the two formulations.
Figures 3 and 4 show the predicted and measured spectra for U = 20m.s−1 and



U = 40m.s−1. We observe that both formulations differ significantly, especially at high
frequency. These differences can be attributed to the fact that φ̂(1)

22 used in the volumic
formulation have been approximated using one-point statistics as explained in Section
4. Moreover, as shown by Howe [12], the multiple scattering correction causes an
oscillation around the value of the half plane Green function.

Figure 3: Sound pressure level (dB/Hz) for a receiver above the trailing edge at rx = 1.22
m at mid-span (θx = ψx = π/2) calculated using the volumic (Equation 12) and surfacic
(Equation 13) approaches for the half plane and the multiple scattering Green functions,
and measured by Stalnov et al. [10] for a mean velocity U = 20m.s−1.

5.3. Directivity diagrams

Figure 5 shows the noise directivity for a receiver at mid-span and at R = 1.22m from
the edge. The frequency of 2700 Hz (k0c = 10) has been chosen such that lobes appears
using the multiple scattering Green function. It appears that the directivity of the Green
function is retrieved, independently of the turbulence source. In fact, we observe that the
same directivity is given by the jump of value in the Green function across the half-plane
and the surfacic approach power spectral density on the one hand, and by the derivative
of the Green function and the volumic approach power spectral density on the other hand.
This is due to the fact that the half plane Green function cancels all contributions from
sources that are not very close to the edge compared to the acoustic wavelength. Both
approaches give the same number of lobes but show different behaviors in the direction
opposite to the flow. The levels of the surfacic formulation are much lower than the levels
of the volumic formulation at this frequency, as seen in Figure 3 and 4 for θx = π/2.



Figure 4: Sound pressure level (dB/Hz) for a receiver above the trailing edge at rx = 1.22
m at mid-span (θx = ψx = π/2) calculated using the volumic (Equation 12) and surfacic
(Equation 13) approaches for the half plane and the multiple scattering Green functions,
and measured by Stalnov et al. [10] for a mean velocity U = 40m.s−1.

6. CONCLUSIONS

A semi-analytical prediction model of the broadband edge noise that can be used
with the tailored Green function of an arbitrary geometry has been derived. As a first
step, this volumic formulation has been compared to the surfacic formulation obtained
from the diffraction theory for the same turbulence model in order to verify the obtained
results. Some differences are observed at high frequencies in the spectra obtained with
both formulation but the directivity diagrams are shown to be very similar.

Subsequently, by using the exact Green function tailored to the half plane, we will
study the impact of the assumptions behind the half plane Green function and the
diffraction theory. Considering trailing edge noise prediction, the anisotropy of the
turbulent boundary layer has to be taken into account. Then, the volumic model will be
extended to an arbitrary geometry using numerical simulations.
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density of the acoustic pressure computed with the surfacic formulation (Equation 13) at
U = 40m.s−1.
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