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ABSTRACT 
The frequency range of a Schroeder sound diffuser is determined by its dimensions, 
depth of the wells and total width. Several authors have studied the relationship 
between the diffuser dimensions and the lowest and highest frequency with 
significative diffusion. In this paper we have verified the validity of previous works. 
Furthermore, we have extended the working frequency range to lower frequencies 
by means of a multiobjective optimization. Preliminary results reveal that the 
frequency range can be extended to lower frequencies, particularly if different 
widths are defined for each well. 
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1. INTRODUCTION 
Sound diffusers are widely used in room acoustics in order to reduce echoes and 

focalizations and to reduce the effect of low frequency modes and as a result improving 
the diffuseness of the sound field. They can be defined as devices on which the sound is 
reflected in a non-specular way, in other words, Snell’s law is not satisfied. The first ones 
were proposed by Schroeder in 1975 [1] and consist of a set of wells with different depths 
that come to modify the phase of sound. Due to this, they are known as Schroeder or 
phase diffusers. When the variation of the depth of the wells is only in one direction, the 
resultant diffusers are called 1D Schroeder diffusers. Among the different types of 
Schroeder diffusers, the most popular is the 7 wells QR (quadratic residue) diffuser. In 
this study we will focus in this particular case. Figure 1 illustrates this sound diffuser.  

 

 
Figure 1. Section of a Quadratic Residue (QR) diffuser of 7 wells. 

 
The quantification of the performance of such a device can be done following two 

different strategies, both standardized by ISO (International Organization for 
Standardization) [2-3]. In this work we will follow the standard ISO 17497-2 2012 [3], 
based on the measurement of the reflected sound pressure over a range of angles, between 
−90º and 90º in steps of 5º (37 measurements in total). For this purpose a microphone is 
sequentially positioned along a semi-circumference centered in the middle point of the 
test sample, which is composed by an array of at least three diffusers (with seven wells 
each one). The original signal has to be windowed in order to separate the reflected sound 
from the direct sound. The parameter measured using this technique is known as the 
diffusion coefficient: 
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where d’j is the diffusion coefficient for the j-th one-third octave band considered, pij is 
the reflected sound pressure for the j-th one-third octave band considered at the i-th 
measurement position, and n is the number of measurement positions (n = 37). This 
diffusion coefficient has to be averaged for different incidence angles (in our case 3). To 
normalize this diffusion coefficient from zero to one, it is compared with that of a flat 
surface. The purpose of normalization is to remove edge diffraction scattering effects due 
to the limited size of the sample under analysis. The normalized diffusion coefficient, dj, 
for the j-th one-third octave band considered, is defined as: 
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where dj,ref is the diffusion coefficient of a flat panel for the j-th one-third octave band 
considered. As a result, dj is equal to zero for all frequencies in the case of a flat surface. 

All these coefficients require tedious measurements in an anechoic environment 
unless numerical methods are available. In particular FDTD is a well-established method 
that can be used for this purpose [4]. Figure 2 illustrates the simulation scheme used for 
this paper. Several techniques have been used in order to obtain the far field reflected by 
the sound diffuser (NFFFT: near field to far field transformation) and to remove the 
incident sound from the simulations (TFSF: total field – scattered field formulation). 
Further details of the simulations can be found at [4]. 

 

 
Figure 2. FDTD Simulation Scheme (reference flat panel). The figure shows the two 
simulation zones (total field zone and scattered field zone). It is as well illustrated the 
measurement points used to transform to far field (see text). The PML is an absorbing 
termination to simulate anechoic environment. 

 
In a QR diffuser the depths of the wells are calculated by the following equation 

[5]: 
 ܵ௡ ൌ ݊ଶ	݉ܰ݀݋	(3)   

 
where N is a prime number on which the sequence is based (7 in this case) and n is the 
index to element Sn of the sequence. In our case (7 wells) Sn=[0 1 4 2 2 4 1], generated 
from n=[0 1 2 3 4 5 6]. The depths of each well is calculated from the sequence as follows.  
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where Dn is the depth of the n-th well (we use here capital letters to avoid confusion with 
the diffusion coefficient), c is the speed of sound and f0 is the so called design frequency. 
For frequencies below f0 the diffuser tends to behave as a flat surface causing 0 diffusion. 
As a result, the lowest frequency where significant diffusion is achieved, ݂ ୫୧୬஽, (D stands 
for the effect of the depth of the diffuser) coincides with the design frequency, i.e.: 
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If the previous equation is particularized to the deepest well it reads as follows (Sn 
max=4) 
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where Dn max is the maximum depth of the wells, in other words, the diffusers depth. 

Up to this point, the effect of the limited width of the diffusers has not been 
considered. In reference [6] this was considered for the first time. According to that paper, 
there is an additional limit that can increase fmin: 
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where L is the total width of the diffuser.  

In the next section we will consider the accuracy of equations 6 and 7 to evaluate 
the lowest frequency at which the diffuser is efficient. Without loss of generality, we will 
considerer that a value of the diffusion coefficient larger than 0.35 corresponds to 
significative efficiency of the diffuser. 
 
2. RESULTS 

We have performed a systematic calculation of the effect of the depth and the 
width of the diffuser. For convenience the maximum depth considered has been 0.34 m 
(the wavelength at 1kHz) and the width has been limited to 1 m. Next figure illustrates 
the performance of two QR (7 wells) diffusers with different widths (1 m and 0.6 m) 
obtained with a FDTD simulation as a function of its maximum depth. Generally 
speaking, the thinner diffuser has lower values of the diffusion coefficient. However, the 
lowest frequency, fmin, seems to have very similar behaviour. 

 

Figure 3. Normalized diffusion coefficient for two different 7 wells 
quadratic residue diffusers. X axis: frequency (Hz), Y axis: total depth 
of the diffuser. Left plot corresponds to a diffuser width of 1 meter and 
right plot to a 0.6 m one. 

 
In order to better study the lowest frequency, Figure 4 illustrates fmin for both cases. 

To obtain this plot we have found, for each possible depth between the limits (0 to 34 
cm), the lowest frequency where significative diffusion is achieved. This implies to set 
an arbitrary limit for the diffusion coefficient to be considered as significative. Given that 
the maximum value of the diffusion coefficient is about 0.7, assuming a limit of 0.35 (i.e, 
50% of the max) seems to make sense.  

 



So, Figure 4 illustrates fmin obtained from the simulations together with the 
theoretical limits commented above (equations 6 and 7). We can conclude that the 
limitation due to the width of the diffuser is no relevant and actually in both cases fmin 
follows the theoretical value due to the depth effect, i.e., fmin D. However this is not true 
for shallow diffusers, when the maximum depth is lower than 0.2 m. 

 
It is quite remarkable that there is a particular range of values of the maximum 

depth for which fmin is about one octave bellow fmin D (see for instance the case of a 1m 
wide diffuser for a maximum depth below 0.15 m). Actually, this was already pointed out 
by Schroeder in [7].  

 
Figure 4. Maximum depth vs fmin for two different values of the width (1m (blue) and 0.6m 
(red)), Continuous lines . Theoretical fmin due to the limited depth of the diffuser (6), black 
line. Theoretical fmin due to the limited width of the diffusers (7), dotted lines. 
 

Taking into account the differences between the numerical results for fmin and the 
theoretical predictions, we propose a simple expression to describe fmin, which describes 
reasonably well the observed numerical results, namely: 
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where W is the width of each well, i.e., W=L/N. This fit is plotted in Figure 5. As can be 
seen, fmin follows roughly this qualitative fit. However, the study has to be extended to 
more cases (different sequences, larger N, and so on), but this is beyond the scope of the 
present paper.  



 
Figure 5. Maximum depth vs fmin for two different values of the width (1m (blue) and 0’6m 
(red)), Continuous lines . Theoretical fmin due to the limited depth of the diffuser (6), black 
line. Fits of fmin following Equation 8, dotted lines. 
 
3. OPTIMIZATION 

In order to study if the low frequency limit can be overcome, we have perform an 
optimization. Given that such an optimization implies two parameters, fmin and Dn max, we 
have used a multi-objective algorithm, in particular an open multi-objective evolutionary 
algorithm known as ev-MOGA [8]. Further details of the optimization algorithm can be 
found at [9].  

Two different optimizations were carried out. In the first one the widths of the 
seven wells were fixed to 1/7 the total width of the diffuser. In the second one, the 
algorithm allowed the wells width to vary between a minimum and a maximum value. 
For convenience the minimum value was fixed to 4 cm, and the maximum value was set 
to 76 cm. The first step is to define a gene codification for the diffusers. The possible 
candidates are encoded by a set of seven genes that represent the normalized depth of 
each well and, and if applicable, seven genes that represent the normalized width of each 
well. 

The next step is to define cost functions, in other words, the parameters that are to 
be minimized. As commented above the two parameters are fmin and Dn max. The second 
one is trivial but the first one can be problematic. In previous works we observed that if 
this cost parameter was defined as the lowest frequency for which diffusion was 
significant, the optimized individuals had a diffusion coefficient that oscillated widely, 
even falling below the threshold. Therefore, in this work we have defined this cost 
parameter as the intersection of the diffusion coefficient with the threshold value for the 
highest frequency within the usual range of study in room acoustics (125 and 4000 Hz 
octaves). As a result, the optimized individuals will be effective from fmin to 4000 √2 
(higher limit of the 4KHz octave band). 

A set of 10000 possible individuals generated randomly were introduced in the 
algorithm as starting point (initial population). Individuals are crossed randomly 
generating new individuals. New individuals are “measured” according to the cost 
functions. Eventually any individual can be removed, due to substitution by a new one, 
from the population if it does not belong to the so called Pareto front, defined as the set 
of points that are not dominated by any other individual of the population. Dominance 



refers to the fact that there is no any other individual with lower values of all the cost 
functions. After a few generations the Pareto front represent the “best” population that 
can be found. 

It is important to highlight that it is necessary to have enough variability of each 
gene; in other words, the depth of the wells has to change in a tiny step. This is relatively 
hard to achieve with FDTD. Due to this we have used a BEM based algorithm instead. 
Since the classical geometry of a QR diffuser will be modelled, special care must be taken 
in order to apply the BEM to solve the problem. Indeed, the presence of the walls 
separating the diffuser’s wells originates very thin surfaces which typically lead the direct 
BEM formulation to degenerate and lead to unstable equation systems. For this reason, a 
dual-BEM formulation is used here, in which the direct BEM integral equation (see 
equation (9)) is complemented by the so-called hypersingular BEM equation (see 
equation (10)). Details of this formulation can be found in [10], and thus only a general 
overview is here given regarding the BEM. 

The classical boundary integral equation can be derived from the Helmholtz 
equation in the frequency domain by applying the reciprocity theorem, and in the case of 
rigid boundaries it can be written as: 
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where G represents the Green’s function for the pressure defined before, and H is its first 
derivative with respect to the normal direction to the boundary ; similarly, p and q are 
the pressure and its first derivative in the normal direction to the boundary (n), at point x; 
pinc(x0,xs,) represents the effect of a possible acoustic source located at point x0. The 
factor C equals 1/2 if x, and 1 for points not in the boundary but within the domain 
(x,). 

The hypersingular boundary integral equation can be derived by taking the first 
derivative of equation (9) with respect to the surface normal, and thus the required 
additional integral equation can be expressed as: 
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The Green's functions G’ and H’ can be seen as the derivatives of G and H with 

respect to the normal to the boundary at the loaded point, n2. In this equation, the factor 
A equals zero for piecewise straight boundary elements. 

This formulation is used to analyse each configuration of the diffuser, allowing to 
compute the sound pressure scattered by the diffuser at any point of the acoustic domain. 
It is thus called multiple times from within the optimization algorithm, allowing the 
evaluation of the defined cost function for each individual. 

 
3.1 Optimization results 

For the sake of brevity we will present here only the results for a diffusor width 
of 1 meter. Concerning the optimization with fixed wells width, the results are 
summarized in Figure 6. It can be seen that optimized diffusers can extend the low 
frequency working limit about one octave. In other words, the limit proposed by 
Schroeder is his first papers can be decreased above two octaves. 

It is very normal that when doing an optimization the optimal individuals are very 
similar to each other. The case presented here is no exception. Figure 7 illustrates the 4 
families of diffusers that make up the Pareto front. Three clearly differentiated families 
are observed, the first appears for high depths and is formed by a group of two wells with 



very shallow depths and another group of 3 wells with very high depths separated from 
each other by wells with intermediate depths. In the second family there is only one 
intermediate deep well. Finally in the last family, which covers the lower depth area, there 
are basically only two different depths. 

 

Figure 6. Maximum depth vs fmin for QR sound diffuser (width 1m) for different total 
depths (black continuous line). Families of optimized diffusers: black circles, blue 
diamonds and red squares. 

 .  

Figure 7. Appearance of the families of optimized diffusers. Left: Family 1, the deepest 
diffusers. Middle: Family 2. Medium depth. Right: Family 3. Less deep. 

Finally Figure 8 shows the preliminary results of the optimization in which the width of 
the wells is allowed to vary. It can be seen that the improvement is almost insignificant 
in the deep zone. However, the improvement is not negligible for intermediate depths. 



 

Figure 8. Maximum depth vs fmin for QR sound diffuser (width 1m) for different total 
depths (black continuous line). Optimized diffusers with fixed well widths (blue circles). 
Optimized diffusers with variable well widths (red squares).  

 
4. CONCLUSIONS 

In conclusion, we have shown that the equations commonly used to predict the 
lower limit of the frequency range of a diffuser can overestimate it up to one octave in 
particular cases. Furthermore, we have proposed a new equation for the estimation of the 
lower limit with better agreement with the numerical results. Additionally we have 
studied the possibility of extending the frequency range of a diffuser for low frequencies 
by means of a multi-objective genetic algorithm, showing that the low frequency limit 
can be extended about one octave in comparison with Schroeder diffusers.  
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