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ABSTRACT

In this paper, the problem of detection of an specific event– a drip–in the domestic
acoustic scene is addressed. The detection of noises generated by water can be of
great interest in domestic scenes because it can help to prevent domestic floods. In
the case of drip sounds, it is quite difficult to get real sounds covering the different
sound qualities that different drops may have. Their sound depends on many factors
as their size, the kind of surface they hit, etc. In order to approach real life as much
as possible, a database including real and synthesized sounds have been created. A
training set has been set up using the speed of variation of the MFCC, the kurtosis
and the probability density function of the high frequencies as features to train a
SVM classifier.
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1. INTRODUCTION

In the last years the automatic detection of acoustic events is showing and increasing
interest and activity. New applications related to the smart acoustic sensing of industrial,
urban or domestic environments are arising. As examples, the well known MFCC (Mel
Frequency Cepstral Coefficients) and a SVM (Support Vector Machine) are used to detect
multiple sounds in domestic environments with the purpose of remote monitoring of
elderly persons ( presented by Alsina et al [1] ). Sharma et al [2] [3], analyze different
acoustic features, as pitch variation or the spectral envelop (formants), to detect the
causes of a baby crying. Different features based on the processing of the normalized
spectrogram, as the spectrogram entropy, are used by Jian [4].
The classification of multiple acoustic events in real life is a challenging and difficult
task. We refer as acoustic event a specific sound produced by a sound source ( a baby
crying, a dripping tap, a glass break, a door opens). These acoustic events have a short
duration and they are embedded in a specific acoustic scenario which contains a mixture
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of all the typical sounds coming from different sound sources. A domestic sound or
acoustic scene might contain sounds as music, speech, a dishwasher humming, a vacuum
cleaner noise, etc. In [5], the strategies and methods to follow in order to design a system
which is able to detect and classify events in complex scenarios are described. In this
paper, the problem of detection of a specific event – a drip– in the domestic acoustic
scene is addressed. In order to design a simple system, the need of possible source
separation, in order to extract the event of interest from the background noise is avoided,
focusing on the extraction of features able to detect the specific event on background
noise. The detection of noises generated by water can be of great interest in domestic
scenes because it can help to prevent domestic floods. The detection of a drip can help to
detect a problem at its early stage.
In the section 2, the method to generate the training database is addressed. In the case of
drip sounds, it is quite difficult to get real sounds covering the different sound qualities
that different drops may have. The timbre of a drip sound depends on the size of the
drops, their speed when they hit a surface, the king of surface they hit or if they fall
into water. Trying to approach the real situation as much as possible, recorded and
synthesized drop sounds have been mixed with different background noises to obtain
a database. The section 3 specifies the acoustic features used to train a linear SVM
classifier. In the section 4, the results of different performed on the system are presented
and section 5 presents the conclusions.

2. GENERATION OF THE TRAINING DATABASE

In order to set up an acoustic events classifier, a balanced database with a representative
set of signals of the events of interests and “no events“ (or background noises) is needed.
In the case of a drip detection, it is not easy to get a good set of drip sounds in different
conditions. For the purpose of this investigation, three sources of sounds have been
handled:

1. Recorded sounds of dripping water on different surfaces (as a hard floor, an
aluminum sink, or a bath tube) and different background noises of the domestic
sound scenario. In order to introduce variability in the database, the audio signals
have been recorded using different devices:

– A mobile phone with the built in microphone.
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Figure 1: "Frame by frame" feature extraction approach



(a) i436 Microphone (b) Frequency response

Figure 2: i 436 Omnidirectional microphone. Sensitivity, S=44dB (6.3mV/Pa) and S/N>63
dB (Source: manufacturer specifications, http://www.mic-w.com/)

– A mobile phone with an external microphone: Mic W i 436, a class 2
ominidirectional, electrect condenser microphone (figure 2).

– An Edirol stereo R-09 voice recorder, with a built in stereo condenser
microphone.

2. Sounds from the household section of the BBC database [6], as water droplets,
vacuum cleaners, kettles, etc.

3. Synthesized dripping sounds: sound synthesis models have been generated to
obtain sounds similar to a water drops falling over different kind of surfaces . The
synthesized sounds have been mixed with different background noises.

It has been chosen to work on a ‘frame by frame” approach, i.e., the audio dataset is
split into small frames and the feature extraction is performed on each frame, see the figure
1. Each frame is labeled as “background noise” (no drip sound in the frame) or “event”
(drip noise in the frame). As the aim of the research is dealing with the detection of short
transient sounds, the duration of each frame is t f = 50 ms. The sampling frequency of
the audio dataset is fs = 48000 Hz. As it can be seen in the figure 3, the duration of the
signal of a drop is around 0.2 s. With the selected frame length, each 0.2 s event contains
4 frames. It should be notice that for low Signal to Noise ratios some of the frames can
be masked due to the influence of the background noise.

2.1. Expansion of the database set using physical models

As previously mentioned, the purpose of this research is the detection of the sound
produced when a drop hits a surface, either water or a hard surface. The perceived sound
quality (timbre) of the radiated sound will depend on the characteristics of the drop (their
size and speed) and the surface (size and material). In order to take into account the
changes of the characteristics of the sound of the dripping water depending on the nature
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of the surface and environmental conditions, its is needed to expand the recorded database
using a model which can produce those changes that has not been possible to register in
the recordings. Two models have been considered: the generation of the sound of a water
drop that hits a rigid surface and a drip on water.

2.1.1 Drops falling on a surface:

In this case, it is assumed that the perceived/registered sound is mainly due to the
radiation of the surface that has been hit by a drop. After being hit by a short duration
of, it could be assumed that the sound is produced by the radiation of a set of acoustic
decays. A modified model similar to the one used by Vörlander [7] has been chosen:

p(t) =

N∑
i=1

Ai sin(2π fi + φi) · w(t) · e−αt (1)

The Equation 1 describes a set of decaying finite cosines to simulate the short duration of
the drop. The length of the signals are controlled by means of the time window w(t),
and chosen empirically, just by hearing that the effect is close to a real drop falling
on a surface. fi are the resonance frequencies of the surface. The size and speed of the
drops will affect the amplitude of the sound radiated, while the size and material of the
surface will determine de decaying resonance frequencies and the damping factor. To
simulate that the database of drop sounds should have a wide number of possibilities, the
resonances frequencies fi, the damping factor α, the phases φi and the amplitudes Ai are
chosen randomly to simulate that a drop can hit any kind of surface.

2.1.2 Drops falling on water

As it is described by Guyot et al [8] and Moss and Hengching Yeh [9], the perceived
sound of a drop is due to the radiation of the bubbles that are formed inside the water, just
after the droplet hits the water surface. Moss [9] proposes several models that deal with
the generation of the sound radiated by bubbles with different degrees of complexity. For
the purpose of this job, the simple model for spherical bubbles have been chosen. The
sound radiated by a spherical bubble can be calculated from the Equation 2 ,

p(t) = εro sin(2π f (t) · t) · e −βot, ε ∈ [0.01, 0.1], (2)

where ε is a tunable parameter that allows to set the initial excitation of the bubbles, ro is
the radius of the bubble in meters, and:

– f (t) is a time dependent frequency which depends on the main resonance of the
bubble, fo.

f (t) = fo(1 + ξβot), (3)

with ξ a parameter with helps to adjust the effect of rising in pitch of the sound of a
drop, taking ξ ≈ 0.1 as its optimum value. The resonance frequency of the bubble
is calculated as suggested by van den Doel [10]:

fo =
3
ro
, (4)



– βo = π foδtot is the attenuation factor of the decaying exponential and δtot the total
damping of the bubble, that can be calculated as [10]:

δtot =
0.13
ro

+ 0.0072 r−3/2
o . (5)

From the last set of equations it becomes clear that the main parameter leading to the
calculation of the radiated sound pressure of a drop falling on a water surface is the bubble
size. The sound pressure, as shown in Equation 2, depends on the resonance frequency of
the bubble and a damping factor and both terms, accordign to Equation 4 and Equation 5
can be estimated from the bubble radius ro. In order to expand the database, a large set of
drops has been generated taking the size of the drop as a random parameter. The radius
of the drop is generated following a uniform distribution between 0.5 mm and 10 mm.

2.2. The generation of the training and test sets

The training data set generated tries to match real conditions as much as possible. The
set of real drip sounds have been expanded with synthetic sounds randomly generated.
A set of 16000 frames of drips sound have been created: 1000 frames comes from real
sounds and 15000 have been generates. As the frame size is t f = 50ms this means
that a set with 800 seconds of drip sound have been created. These sounds have been
mixed with different background noises: domestic noises obtained from the BBC
database [6] (vacuum cleaners, kettles, shavers, etc), speech and different kind of music
covering different styles (pop, jazz, classic, etc). By mixing random drops with different
background noises, a balanced training sets has been created trying to reproduce the
variability of real life conditions. Each training set has 1000 drops (which means around
4000 frames belonging to the class “Drop”) and 1000 samples of background noises
taken randomly from the background noises database. Therefore, the training signals last
66 seconds each.

3. ACOUSTIC FEATURES

One of the most critical aspects of audio detection and classification is the selection
of a set of features that are relevant, they do not introduce redundancy and the distance
the distance between classes is maximized [11] [12]. With the increasing interest on
the detection of acoustic events, there is an extensive description of different acoustic
features throughout the bibliography [13]. One of the more common approaches is the
use of feature extraction methods that have been primary used for speech signals. The
Mel-frequency cepstral coefficients (MFCC) and some other features based on the Mel
scale (as the logarithmic Mel-Filter bank coefficients – FBANK) are of common use in
the detection of acoustic events [14], although it is well known that they are quite sensitive
to background noise [15]. The following features have been considered for the purpose
of this job:

– High pass probability density function. The figure 3 shows the signal of a water
droplet, its spectrogram and the spectrogram of the signal of a dripping tap on a
sink . The persistence spectra of a drip sound on a continuous background noise and
background noise are also shown. The persistence spectrum shows the probability
density function for each frequency bin, i.e. the percentage of the time that a given



frequency is present in a signal. In the figure 4 (d) the PDF of a background noise
signal frame to the PDF of a signal frame containing a drip sound on the same
background noise are compared. It can be noticed how the probability density of
the high frequencies increases. As most of background noises have higher energy
at low frequencies, it is expected that this feature can be quite robust against most
of the most common domestic background noises.

– Kurtosis: for a given set of samples of a signal (a frame), the kurtosis is calculated
as the fourth standardized central moment:

k =
E(x − µ)4

σ4 , (6)

where µ is the mean and σ the standard deviation of the set of samples. k=3 for
normal distributed samples, while it takes hight values when transients (outliers)
are present in the sample. The kurtosis is quite sensitive to impulses even with very
low Signal to Noise ratio [16]. The figure 4 (a) shows the kurtosis for 30 seconds
of signal of a dripping tap on water with a background noise. It can be noticed how
the kurtosis becomes high in the presence of a the transient signal (drip sound).

– ∆MFCC: The speed of variation of the MFCC coefficients inside a frame have been
also considered as an useful feature to detect the drip sound. The figure 4 (c) shows
the ∆MFCC for the example mentioned. It can be noticed how the peaks of the
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Figure 3: Signal and spectrogram of a dripping tap on water: (a) and (b). (c) Persistence
spectrum of a continuous background noise (c) and the persistence spectrum of a drop on
a continuous background noise (d).
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Figure 4: Acoustic features of a 30 seconds of signal of a dripping tap on water with
background noise.(vacuum cleaner).

coefficients matches the frames where the event is present. For a given sample n,
the ∆MFCC are calculated as:

∆MFCC[n] = MFCC[n] − MFCC[n − 1]. (7)

4. RESULTS AND DISCUSSION

Once selected the acoustic features to be used, a training set has been created to train
a linear SVM (Support Vector Machine) classifier [17] [18]. Different tests have been
performed to check the performance of the detection:

– A set of test using samples of background noise and drips of the recorded databases
not included in the training set .

– Test on real conditions.
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Figure 5: Confusion Matrixes for classification tests on the a subset of the prerecorded
database: (a) and (b) continuous backgroung noise (vacuum cleaner). (c) and (d)
background music.

4.1. Subset of the recorded database

The first set of tests have been performed using signals created from a subset of the
recorded database that has been reserved as "test set", i.e. none of the events or the
background noises used to create the test signals have not been used during the training
stage. The figure 5 shows the confusion matrixes obtained in the cases:

a) Random set of drops (a mixture of recorded and synthesized drops) on a continuous
background noise (vacuum cleaner). A SVM trained with features extracted with a
frame length t f = 10 ms is used.

b) The same test signal, but in this case the frame length is set to t f = 50 ms.

c) Random set of drops on background music with t f = 10 ms.

d) Random set of drops on background music with t f = 50 ms.

The results shown in the figure 5 are obtained for a test signal of 30 seconds, which
means a total 3000 frames in the case of a frame length t f = 10ms or 600 frames in the
case of selecting a frame length of t f = 50ms:

– For a frame length t f = 10ms, the 17.3 % of the frames of the class "Drop"
are correctly detected in the case of continuous background noise. In case of
background music, the percentage of true positives is 14.1 % of the "Drops" are
correctly detected. There is not false positives in both cases.
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Figure 6: Detection of drip sounds on background music.

– If the frame length is t f = 50ms, the percentage of true positives increases up to
35.8 % (continuous background noise) and 31.8 (background music), although in
the case of background music there is a 3.6 % of false positives.

– The figure 6 shows an example of the results in the case of detection of drip
sounds with background music. It can be noticed that there is not bursts of false
positives: they are only isolated single frames wrongly classified as "drop". In a
post-processing stage the decision of "event" could be taken only when a minimum
number of frames have been detected as "event" within a time interval.

– The system shows the possibility to detect drops even for low signal to noise ratio.

4.2. Test on real conditions
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Figure 7: Confusion Matrix for the real test: dripping tap on an aluminum sink with
continuous background noise (vacuum cleaner). S/N=10 dB.



The system has been tested with a recording of a dripping tap on an aluminum sink
with a background noise (a vacuum cleaner). The averaged Signal to Noise ratio during
the recording was 10 dB. The figure 7 shows the results obtained. From a total of 25
frames expected as "Drop", only 11 have been classified as "Drops", being classified as
"No Drop" (or Background Noise) 14 frames. The real test does not show any false
positive, i.e. none of the frames expected as "No Drop" has been detected as "Drop".
If it is taken into a count that a "frame by frame" detection is performed and each drop
contains 3 or 4, frames it could be enough to detect correctly 1 over 3 or 4 frames of a
“event“. This means that an event could be classified as “drop“ if at least 25 % of the
frames within a time interval of ti=0.2 s (duration of a frame) have been classified as
“Drop“. It can be noticed in the example shown in the figure 7 (b) how at least one of the
frames is correctly detected in 10 of the 12 drops recorded during the 3 seconds of the
signal shown. This means that 83 % of the drops have been properly detected.

5. CONCLUSIONS

In this paper it has been evaluated the possibility of detection of drip sounds on real
conditions, which means variable background noise. A training database has been created,
using synthetic drip sounds with real recordings which have been mixed with different
domestic background noises, as vacuum cleaners, washing machines, shavers, speech and
different kinds of music. A training data set has been created from the data base, using
the kurtosis, the probability density function and the speed of variation of the MFCC as
features to train a SVM classifier. The table 1 shows a summary of the measurement of
the classifier quality performance:

– Accuracy: measures the percentage of frames correctly classified over the total
number of predictions.

– Recall: measures the percentage of events correctly classified (true positives) over
the total number of expected events (i.e. true positives + false negatives).

– Specificity: measures the percentage of no-event frames (true negatives) over the
total number of expected negatives (true negatives+false positives).

– Precision: measures the fraction of true positives over the total of positives
expected.

– FMesure or F-Score: it is a weighted harmonic mean of the precision and recall:

F − S core =
2precision × recall
precision + recall

(8)

As it can be seen in the table 1, the classifier has a high precision and low recall,
which means that even though a significant number of frames that should be classified as
belonging to the “event” class, they are misclassified, those detected are correct with
a high probability. The high specificity means that the probability of false alarm is
really low. All the test performed show promising results, showing that it is possible
to implement a drip detection through its acoustic signature.



Table 1: Classification measures from tests performed over the database set (samples
with continuous background noise and background music), and a test performed on a
recording on real life conditions.

Continuous Noise Background Music Real Test
Accuracy (%) 93.55 90.33 72.73

Recall (%) 59.55 41.18 44.00
Specificity (%) 99.41 98.45 96.67

Precision(%) 94.64 81.40 91.67
FMeasure 0.73 0.63 59.46
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