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ABSTRACT 
 

When audio-frequency sound is incident near grazing on acoustically-hard surfaces with 
periodic sub-wavelength roughness air-borne acoustic surface waves are generated 
which could be used to amplify acoustic signals and, therefore, improve detection 
ranges of, perimeter security systems. Experimental and numerical studies using the 
Boundary Element Method (BEM) of the sound field generated over periodically-
spaced rectangular strips also show several enhancements as a result of complex 
interactions between the sound field and the rough surface. Surface waves result in 
excess attenuation spectra with anomalous maxima greater than the 6.02 dB that would 
be expected from constructive interference above a smooth acoustically rigid surface. 
The enhancements are found to depend on the roughness spacing and can be attributed 
to effects due to the finite width and periodicity of the array, quarter-wavelength 
resonances in the gaps between elements and Bragg diffraction. Pressure maps of the 
total sound field over rough surfaces show the details of the sound field at the 
frequencies of interest. As well as being useful for amplifying frequencies arriving at a 
sensor array, detailed study of the enhancements provides understanding of the 
evolution of the sound field over rough surfaces.  
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1. INTRODCUTION  
 
The theoretical formulation of the sound field above a rough surface was undertaken by 
Tolstoy [1]. He studied the coherent scattering of spherical pulses by applying a small 
roughness boundary condition developed by Biot. Coherent scatter is more important 
than incoherent scatter if the size of the roughness elements is much less than the 
wavelength of the incident sound. Biot replaced the scattering elements with a smooth 
distribution of dipole and monopole sources under the condition that the centre-to-
centre spacing between consecutive roughness elements is small compared to the 
wavelength of the incident sound. Tolstoy’s solution, using a simple effective boundary 
condition, contains two independent arrivals: a body wave and a surface wave. This 
surface wave is similar to that predicted by Brekhovskikh [2] over a comb-like 
impedance surface and was found to decrease exponentially in amplitude with height 
above the surface and spread cylindrically.   
 
Tolstoy also found that for rigid hemispherical bosses under far-field, near-grazing 
conditions, the normalised spectrum of the scattered wave is given by,  
 

  

(1.1) 
 

where  is the wavenumber,  is the range and  with and 

being the receiver and source heights respectively. The term  is the scattering 
parameter which has units of length and is proportional to the volume per unit area of 
the elements and is a function of the shape and packing density of the roughness 
elements. At grazing angles, the scattered wave is the surface wave and is given by,  

   (1.2) 
 

The above case was studied by experimentally by Medwin et al. [3] For hemispheres 

and spherical bosses, the direct wave in the half-space is so that,  

   (1.3) 

 

Short range experiments in which spherical pulses were propagated over hemispherical 
and spherical bosses show that the spectral slope of the resulting boundary waves did 
obey the  and  dependence expected from equation 2. However, at longer ranges 
the results deviated from this relationship. The boundary wave amplitude did not 
continue to grow as predicted in equation 2 but instead tended towards a constant value. 
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One explanation for this discrepancy is that after a certain range, incoherent scatter 
dominates. A second explanation suggests that after a certain range, the phase lag 
between the scattered elements and the direct response results in destructive interference 
between the two contributions. Similar measurements were carried out over cylinders 
and assumed to obey the same relationships. However, once again, discrepancies arose 
in longer-range measurements as a result of multiple diffraction contributions due to the 
widely-spaced elements. Finally, measurements were carried out over a variety of 
wedges. The ratio of boundary wave amplitude to direct wave amplitude increases 
linearly with volume/area and increases with increasing slope of the wedge size. For 
long range measurements, the ratio asymptotically approaches a constant value which 
supports the idea that the boundary wave ‘self-destructs’ due to destructive interference 
with the direct contributions.  

Further analysis into coherent sound scatter from different roughness element shapes 
was carried out by Tolstoy [4] who determined that in a general case, the boundary 
wave is a result of energy stored between closely packed roughness elements and 
exchanged with the compressional energy from the source, resulting in horizontally 
propagating modes.  

The use of poroelastic and rough surfaces for noise control has been well established in 
both literature and practise. It has been shown by Bashir et al. [5] that a surface 
composed of periodically-spaced rectangular strips can be modelled as a hard-backed 
slit-pore impedance layer with an effective porosity and flow resistivity determined 
from the width of the strips and the spacing between them. This is true if the spacing 
between the elements is less than 50% of the layer depth. This allows for the use of 
simple and cost-effective arrangements for noise mitigation. However, it has also been 
found that the same arrays of roughness elements provide sound enhancement at some 
frequencies. Some of the physical mechanisms that provide such enhancement and 
attenuation over rib-like structures has been outlined by Bougdah et al. [6]. These 
mechanisms include surface wave generation at lower frequencies, the potential for 
constructive and destructive interference between scattered contributions, interference 
within the grooves and also effects due to quarter-wavelength resonances arising within 
the gaps between elements.  
 
In this paper, the sound field generated over a surface composed of periodically-spaced 
rectangular strips is investigated both experimentally and numerically, as is the effect of 
varying the spacing between the strips on the enhancement features observed in excess 
attenuation spectra.  
 
 

 

 

 

   



2. SLIT-PORE IMPEDANCE MODEL 
 
A comb-like surface made from parallel rectangular strips can be considered to act 
acoustically as a hard-backed locally reacting rigid porous layer composed of slit-like 
pores [5]. The slit-pore impedance model is applicable where viscous and thermal 
boundary layers exist due to sound propagation between the slits. The ground may be 
characterised by a complex density , and a complex compressibility ,which 
account for the viscous and thermal effects respectively. 

  (2.1) 

  

   (2.2) 

  (2.3)  

                         

The function  is the complex density function,   is the adiabatic 

compressibility of air,  is the ratio of specific heats,  is the Prandtl number,  is 

the porosity and  is the flow resistivity. The dimensionless parameter can be 
related to the flow resistivity of the bulk material using the Kozeny-Carman formula, 

 

   (2.4) 

 

where is the tortuosity ( = 1 for vertical slits), is the viscosity, is the pore 

shape factor ( =1.5 for slit-like pores) and is the hydraulic radius which can be 
taken to be half the value of the edge-to-edge spacing, between roughness elements.  

The bulk propagation constant, and the relative characteristic impedance, 
can be written as, 
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3. METHODS 
 
3.1 Modelling 
 
The results in this paper are obtained using simulations of the sound field over the surfaces 
of interest via a 2D Boundary Element Method (BEM) program developed by Taherzadeh 
et al. [7]. The boundary element method solves partial differential equations formulated 
as boundary integrals. Through the implementation of boundary conditions, the sound 
field can be found at any point within a specified domain of interest. The program 
developed by Taherzadeh has the benefit of not requiring discretisation of the ground 
surface since it is possible to simply define the impedance parameters of that surface 
instead. As a result, the computational time is significantly reduced.  
 
The above program is useful for the study of excess attenuation spectra in the frequency 
domain. It is possible to identify enhancement features in excess attenuation spectra since 
the maximum possible enhancement as a result of constructive interference due to 
reflection from an acoustically rigid surface is 6.02 dB. Therefore, any excess attenuation 
peak above this value is of interest.  
 
3.2 Simulation Setup 
 
The elements have a fixed height of 0.02 m. The element thickness is varied between 0.01 
m, 0.03 m, 0.06 m and 0.10 m. This has been done for strip spacings of 0.005 m, 0.02 m, 
0.03 m and 0.04 m.  
 
The source and receiver are separated by 1.00 m and their heights are kept constant at 
0.03 m so that they sit 0.01 m above the strip surface. The source sits just above the first 
strip and the receiver is just outside the array.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. RESULTS & DISCUSSION 
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Figure 1. Excess attenuation spectra as a function of frequency for strips with a varying 
thickness, T for a given spacing, G.  
 
For the smallest spacing, the surface appears to act as a slit-pore impedance layer due to 
the width of the gaps being less than 50% of the strip height (layer depth). Thus the peak 
above 6.02 dB can be attributed to the generation of an air-borne acoustic surface wave. 
This is characterizable by the broadness of the peak and is caused by a high ‘springlike’ 
reactance associated with the effective impedance of the surface. As the gap (and effective 
porosity associated with the surface) is increased, the reactance reduces. 
 

 
Figure 2. Effective reactance at various frequencies of a strip surface as a function of 
the effective porosity. The strips have a height of 0.02 m (layer depth) and a thickness of 
0.01 m.  

As the gap is increased, the surface begins to behave more as a rough surface and the 
peak in the excess attenuation spectrum becomes sharper. This is because the roughness 
elements begin to act as individual scatterers. A second peak becomes more dominant 
and thus the enhancement feature can no longer be attributed to a surface wave.  

G=0.04 m 



The enhancement achieved by a rough surface is dependent on the number of scattering 
edges per wavelength. For smaller gaps, the number of edges per wavelength is higher 
resulting in more diffracted contributions at the receiver constructively interfering and 
providing sound enhancement. Once the number of scattering edges is reduced and the 
spacing is increased, quarter-wavelength resonances arise within the gaps. This is 
similar to the effect observed in organ pipes closed at one end and the associated end 
correction can be calculated using, 

   (4.1) 

where h is the strip height and E is an end correction. 

Thickness 
(m) 

 
0.005 

 
0.02 

 
0.03 

 
0.04 

Gap (m) End 
Correction  

End 
Correction  

End 
Correction 

End 
Correction  

0.01 0.0205 0.0089 0.0115 0.0118 
0.03 0.0171 0.0163 0.0205 0.0180 
0.06 0.0182 0.0252 0.0268 0.0361 
0.10 0.0345 0.0441 0.0474 0.0529 

 
Table 1. The end corrections associated with each spacing and thickness. 
 
The end correction for an unflanged circular pipe is approximately [8]. Table 1 
shows the end corrections are larger for smaller gaps between strips. It is thought that this 
is due to interactions between the resonances resulting in regions of higher pressure. As 
the gap is increased, these resonances cease to interact and the end correction decreases 
and becomes closer to the accepted value of 0.3 times the gap. Simulations carried out for 
the total sound field over the strips at the frequency of the excess attenuation maximum 
show this. For a fixed source-receiver separation of 1.0 m, the number of strips was varied 
between 40 strips with a separation of 0.0178 m and 23 strips with a separation of 0.0534 
m.  
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Figure 3. (a) Total sound field over 40 periodically-spaced rectangular strips at 
frequency of enhancement feature (1951 Hz) (b) Total sound field over 23 periodically-
spaced rectangular strips at frequency of enhancement feature (1857 Hz). 
 
Figure 3 shows that as the gap is decreased, the high pressure regions begin to interact. 
This is identifiable as the high pressure region every 3 strips. For the larger gap, a high 
pressure region can be seen above every strip since these resonances can no longer 
interact.  
 
As the gap is increased so that there are less than 3 edges per wavelength, the 
enhancement features can be attributed to Bragg-like diffraction effects. Bragg 
diffraction occurs when two diffracted wave scatter coherently from points on a crystal 
lattice, in this case the roughness element edges. These waves interfere both 
constructively and destructively depending on the path length difference between them. 
The Bragg frequencies,   at which interference occurs is derived from Bragg’s law 
and is given by,  

   (4.2) 

brf
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To investigate the Bragg-diffraction effect, a series of simulations was carried out for 
large strip separations with an increased source-receiver geometry. The source-receiver 
separation was set at 2.00 m and the source and receiver heights were set at 0.03 m. The 
thickness and height of the strips were 0.04 m and 0.02 m respectively. The gaps were 
set at 0.125 m, 0.25 m and 0.5 m corresponding to 13, 7 and 5 strips, respectively. The 
geometry was chosen such that there was one element per wavelength which is in 
agreement with Bragg theory.  

 

Gap (m) First Bragg 
Frequency (Hz) 
(n=1) 

First Excess 
Attenuation Peak 
frequency (Hz) 

0.125 1039 950 
0.250 591 523 
0.500 318 281 

 

Table 2. Frequency of first excess attenuation peak for a strip gaps of 0.125 m, 0.250 m, 
and 0.500 m and the corresponding Bragg diffraction frequencies calculated from 
equation 6.25. 

 

Figure 3. (a) Excess attenuation spectrum for 13 strips with an edge-to-edge spacing of 
0.0125 m. (b) Excess attenuation spectrum for 7 strips with an edge-to-edge spacing of   
0.250 m (c) Excess attenuation spectrum for 4 strips with an edge-to-edge spacing of 
0.500 m  

There is good agreement between the frequencies of the first peaks in the excess 
attenuation spectra and the Bragg frequencies calculated from the geometry associated 
with the spectra.  



One assumption in Bragg theory is that the periodicity remains constant between 
scattering elements. In order to investigate the effect on the sound field of aperiodicity, 
the spacing between elements was randomised. The results are displayed in figure 4 and 
it is clear to see that the peaks due to Bragg diffraction have diminished. The peaks in 
the spectra are a result of constructive interference between scattered waves from the 
tops of the strips and it is also clear that the amplification potential of such an array is 
inferior to that of a periodic array.  

 

  

Figure 4. (a) Excess attenuation spectrum for 13 strips with randomised spacing(b) 
Excess attenuation spectrum for 7 strips with randomised spacing (c) Excess 
attenuation spectrum for 4 strips with randomised spacing.  

 

5. CONCLUSIONS 
 
The sound field generated over a surface composed of periodically-spaced strips has been 
investigated via numerical simulation. Plots of excess attenuation show distinct 
enhancement peaks above the 6.02 dB associated with constructive interference due to 
total reflection off an acoustically rigid surface. The mechanisms by which these 
enhancements are generated vary with the spacing between roughness elements.  
 
For smaller spacings, the surface behaves like a slit-pore impedance layer with a high 
imaginary impedance resulting in the generation of an air-borne acoustic surface wave. 
This is also due to a high number of scattering edges per wavelength which give rise to 
diffracted contributions that constructively interfere at the receiver. As the gap increases 
and the number of scattering edges per wavelength decreases, quarter-wavelength 
resonances arise within the gaps. These resonances interact when the gap is smaller and 
produce high pressure regions above the strip array resulting in enhancement.  
 



As the gap is increased further and the number of edges per wavelength reduces to less 
than 3, the dominant enhancement mechanism becomes Bragg diffraction. This 
phenomena only arises when the roughness elements are periodic. This is useful since it 
shows sound enhancement is achievable with very few roughness elements. However, the 
more scattering edges per wavelength, the stronger the enhancement.  
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