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NOISE CONTROL FOR A BETTER ENVIRONMENT

Virtual round robin tests for uncertainty quantification of
single-number ratings for the sound reduction index
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ABSTRACT

As transmission loss assessment is subject to a significanariability across
a range of possible facilities, virtual round robin testing is applied to assess the
inherent uncertainty of a given measurement procedure on tb weighted sound
reduction index. The joint probability distribution of the uncertain parameters is
guantified by means of a maximum entropy approach. A Monte Calo simulation
is then performed to predict the uncertainty of the sound inglation. At high
frequencies, an fficient method is needed to calculate the sound transmissiorA
nonparametric probabilistic method is therefore developd based on the Guassian
Orthogonal Ensemble (GOE), where the wall and the rooms are aupled using
the spatial correlation of room modes. With the presented aproach, the sound
reduction index can dficiently be predicted up to high frequencies. This allows
quantifying the uncertainty of the weighted sound reductio index and its spectrum
adaptation terms according to 1ISO 717-1:2013. Applicationof a calcium silicate
block wall shows good correspondence with indicative valigefor uncertainty of the
weighted sound reduction index given in ISO 12999-1.
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I-INCE Classification of Subject Number: 76

1. INTRODUCTION

Sound insulation assessment in laboratories is subjeatliiphe uncertain parameters,
related to the measurement setup, room properties, anddagble dimensions and
damping loss factors. Due to this uncertaintyffetiences are encountered between
measurements done affférent test facilities, which is referred to as reprodudipih
the literature I]. As a specific problem, the uncertainty in the direct sousdiiction
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index assessment of a building component according to 1SK3A6 ] is numerically
studied. The measurement setup consists of a source room @audiver room with a
test element, e.g. a wall, in between. Numerous experirhestad robin tests have
been performed to study the variability of the performante avall system across
several facilities, but these tests are usually expensivéhis paper, virtual round robin
testing is applied. A probabilistic framework is used foaqtifying the combinedféect
of all uncertain parameters, constructing their joint @bty distribution by means
of a maximum entropy approacB][ The distribution that is obtained in this way is
compatible with the available information (taken from 1S@120-5 and literature) but
otherwise maximally conservative so that no conclusions loa drawn that are not
warranted by the available information.

For quantifying the uncertainty of the predicted sound draission loss values, a
Monte Carlo approach is employed. Statistically indepehdamples of the random
parameters are generated in accordance with their joirtiglibty distribution. For
each set of generated parameter values, correspondingetdization of a transmission
suite, the sound reduction index is calculated. For pregjcthe sound transmission
loss in a design situation, a suitable mathematical modekeeded. In this paper, a
novel non-parametric probabilistic method is presentsgtan the Gaussian Orthogonal
Ensemble. The test element is modeled deterministicalljewthe acoustic fields of
the rooms are assumedfdise. The rooms and the wall are coupled using the spatial
correlation of the room modes and an analytical expresditreavall modes. The model
allows computing the sound transmission in a computatiprdiicient way up to high
frequencies, combining parametric and non-parametrietainty in the Monte Carlo
simulation. A set of statistically independent sampleshaf weighted sound reduction
index can then be calculated, from which its mean, varigmadability distribution, etc.
can be estimated.

The paper is organized as follows. First, the prediction ehtdescribed, after which
the difuse model for the natural frequencies and modeshapes issdet. The parametric
uncertainty quantification based on the maximum entropyaggh is reviewed. The
paper concludes with the application of a calcium silicatekwall.

2. PREDICTION MODEL FOR AIRBORNE SOUND INSULATION

2.1. System of equations

The transmission loss is computed using the assumed-moelb®d) approximating
the pressure fields of the source ropmand reveiver roonps and the vibration field of
the wallu, into a finite set of basis functions:
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P13 = Z $1/3(X Y, 20 a(w) = P1/301/3 Up ~ Z oY, Dx(w) = P02 (1)
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Inserting these approximations into Lagrange’s equatiminsotion and adopting a
hysteretic damping model yields the following linear sysief equations:
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with i the imaginary unit andvy the diagonal matrix containing the circular undamped
eigenfrequencies for subsystémsorresponding to the mode shapesgpin The damping
loss factors of the rooms are computed from their reverlmeréimes vian = 4.4/ (wT).
Then, loudspeakers are modeled as point monopoles acting alqusst,;, Yp;, Z»;) With
volume accelerationa,(w). Elementk of the loading vectof; therefore reads

fi(w) = —padp(w) Z G1(Xpi» Yoi» Zpi) 4)
i

The matriceK 1, andK 3, are coupling matrices that represent the loading on the room
due to the plate movement, akd, andK 3 represent the loading on the plate due to the
room pressure. The elements of the coupling matrices are:
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The computations require the natural frequencies and muajees of the subsystems
to be computed. The rooms are modeled &sigle subsystems, whose natural frequencies
and mode shapes are computed in secBoifhe wall is assumed to be a deterministic
subsystem. Its natural frequencies are given by:

D.
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with D, the bending sffnessjm; the mass of the wall per unit ardg, the width, and_,,

the height of the wall. The integens, andny, represent the number of half wavelengths
in the plate dimensions. The mode shapes of the wall arelasdclias follows:

2
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2.2. Reducing the number of modes

Wk =
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In order to dficiently solve equation?), one should note that the number of modes
in the rooms is generally much higher than the number of modtdse wall between the
two rooms. It is therefore advantageous to perform row redoon the block matrices
to reduce the size of the system of equations in equa#prThis yields:

Agz=b (9)

where the elements of the matricksandb are given by:
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The energy in the source and receiver room can then be cothasite
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Note that for solving the system of equations, sums are meeder expressions with
D11k Or Dsskk In the denominator. As these are very smalldgk ~ w andwsz ~ w,
respectively, it is sfiicient to take a limited number of modes in the vicinity of the
considered frequency, as the contribution of these modesndes the summations.
Under the assumption that the numerator of these sums is ondess constant in the
vicinity of the considered frequencies, the relative ewanade by only looking at a
frequency ranged — a, w + @] equals:

2 2a
e=1-- arctar(—) (12)

n wn
Only taking a limited number of modes into account leads toaerestimation of the
total response. This error can be corrected for by multigthe sums in equation&@)
and (L1) by a factory, which is given by:
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2.3. Sound reduction index
The sound reduction inddéXis computed with the measurement formula:
El E3 82

R=10l — |- 10l — |+ 101 — 14
Oglo(vl) 0910(V3)+ Oglo(Ag,) (14)

in whichV; andV; are the volume of the source and receiver ro8mis the surface area
of the partition, andds is the absorption of the receiver room.

Using the computed one-third octave band values of the smedettion index in the
bands with a center frequency between 100 Hz and 3150 Hz gigihted sound reduction
indexR,, and the spectrum adaptation ter@sCy, Csp_3150, aNdCy 50-3150 are calculated
according to ISO 717-1:2013] The uncertainty is assessed by computing the single
number ratings for every realization from which the meaandard deviation, probability
density function, etc. can be calculated

3. NON-PARAMETRIC UNCERTAINTY QUANTIFICATION

The wave fields in the rooms are modeled a$ude fields. A difuse wave field is
a random field, composed of plane waves coming from all doest with statistically
independent and uniformly distributed phases and zeraimgcorrelated amplitudes
with equal varianceq]. High-frequency analysis methods such as statisticaiggne
analysis (SEA) ] rely on the wave-based or modal-based descriptionsftis# fields.
However, the conventional SEA allows only for the mean respoquantities to be
computed. When also the variance is of interest, an exterdithe difuse field model
is necessary. Weaver][found that, for the generic case where the consideredapati
uncertainty does not preserve symmetries, the statistiteedocal eigenvalue spacings
saturate to those of the Gaussian Orthogonal Ensemble (@@@)x from random
matrix theory B]. The GOE model can be used to obtain the mean and variance of a
subsystem’s total energy.



3.1. Natural frequencies of a difuse acoustic volume

The following analysis is concerned with the response of itef@coustic volume in
a frequency range for which the GOE model is valid. As in thexjfiency range, the
statistics of the local eigenvalue spacings saturate teetlod the GOE, a nonparametric
description of the spacings distribution can be used. Téguiency range of interest is
assumed finite, with a lower boung and an upper boud,. For a specific subsystem,
the expected total numb¥;,; of eigenvalues in the frequency range of interest can be

determined as: ’
Nint = f n'(2)da = fw N(w)dw, (15)
A w)

whereAa := w?, andn'(2) represents the local eigenvalue density, which is relatete
modal density by

n'w?) = 52 (16)

The GOE matrixG,,(cg) Is a real symmetrlc matrix with dimensiong x ng. The
elements with dferent indices are independent, centered Gaussian rand@hlea. The
diagonal elements have varianceZ2and the @-diagonal elements have varianeg,
where the parameters serves to specify an eigenvalue scale. Becd@ygéog) is real
and symmetric, it hasg eigenvaluedg, that are purely real.

Wigner has showrd] that the density of the eigenvalugs of the GOE matrixid (1),
which are real and centered around zero, convergesgfes oo, to

2n A2
ni(dg) = TrG 1- r—f r<dg<T, (17)

with r := 20c+/Ne. The cumulative count function of GOE eigenvalues in thegean
[- 1w, Ac] therefore equals

e > 5 Acu A
Ng(/lg) = ? Acu /lGu + Ag /l +r? arCtan\/: + arctan—
A2 NG /12

(18)

To obtain a monotonically increasing functidfs(1g) in the range [ONin], Agy IS
numerically computed by imposings(Acy) = Nint.
The cumulative count function of acoustic eigenvalues ertnge of interesti, 1]
Is obtained as :
N(2) = f n'(2)dA. (19)
A4
This is a monotonically increasing function (just Hg(1g)) and therefore invertible.
The range is again [WN;¢]. Application of the inverse function to the uniform random
variables then yields a set of eigenvaluefor the physical system having the correct
densitynt(A):
A= N"(Ns(4g)) - (20)
In summary, a set of eigenvalue realizations for the acowstiume is obtained as

follows. The number of expected eigenvalues in the frequeange of interesNi,; is
first computed from15). Then, for a realization of the GOE matrix, its eigenvalases



computed and the range Jeu, Acy] is obtained from imposindlg(1cy) = Nie. Finally,
the GOE eigenvalue realizations are transformed into dcoagyenvalue realizations
using @0). This procedure can be performed for the entire frequeange of interest
[4, Ay] or for different frequency intervals in order to decrease the size ®fGDE
matrices and therefore the computation cost of their eigles. An important advantage
of the this procedure is that the normalized GOE eigenvgbaeiags do not depend on
any physical property. This implies that the computed radilbons can be tabulated and
re-used.

3.2. Mode shapes of a dfuse acoustic volume

The mode shapes of a room in high-frequency regime can beisted as standing
waves that arise from many traveling plane wave compongwispting a difuse acoustic
field model, the pressure mode shape at a given locationstensi a summation of
independent plane acoustic waves with the same mean adgéind uncorrelated phases,
coming from all directions with equal probability. It theallbws from the central limit
theorem that the acoustic mode shapes are zero-mean, &atasdom fields. A zero-
mean Gaussian random field is uniquely determined by itsr@wse function.

For diffuse reflecting boundaries, the mode shapgsre statistically homogenous,
l.e., the statistics of the pressure mode shape componeat;i@ependent of their
position. The corresponding random wave field is fude field. For three-dimensional
volumes, its covariance function then has the fo@|:[

Ago (ksflX = X’])  for 2 points in the acoustic room

21
2A4j0 (KsrIX = X’|)  for 2 points on a reflecting boundary (1)

Csr (X, X) = {

where j)(x) = sin(x)/x is the spherical Bessel function of the first kind and ordeoze
ke := Z denotes the wavenumber corresponding to the wavelehgtbf moder for
subsystens andA; is a factor that is independent of position, which can berdsatesd
from the mode shape normalization condition. In an acowstosure?2 with volume
Vs, the normalization condition reads:

1
f@‘ﬁsrz(x)dx =1 = Ag= —. (22)
Q

The correlation function1) depends only on the distance between the considered mode
shape components, the wavelength and the total volume. e Gtoperfect reflecting
boundaries, the mean squared sound pressure is twice thresgeared sound pressure
in the center of the roomlfl]. Because of this, a factor two appears in the covariance
function @1) for points located on the reflecting structural eleméa}.

Realizations of the mode shape veatgfx) can be obtained from a discrete Karhunen-
Loéve decomposition: with the eigenvalue decompositicimefcovariance matrix

Cs = AZAT, (23)
the corresponding mode shape vector is
s = ALIE, (24)

whereg is a vector of independent, standard normal random vagdbé can be realized
with a Gaussian random number generator.



However, to compute the coupling matrices in equatiod)sand €), the mode
shapes are needed over the wall surface, which requires anéish, especially at high
frequencies. This implies a large covariance matrix andefbee a computationally
expensive eigenvalue decomposition. To reduce the cortigudé cost, the wave field
close to the wall is assumed to be statistically uncorrdlftem the wave field at the
loudspeaker positions, which is reasonable as the loudlspeare located at a significant
distance from the wall and the covariance matrix in equaidhdecreases strongly with
distance. Therefore, the discrete Karhunen-Loéve decsitipo is used to obtain the
mode shapes at the positions of the loudspeakers in ordempuwte the loading vector
in equation 4). The coupling matrices are computed independently asnedtlin the
next subsection.

3.3. Computation of the coupling matrices

Instead of numerically evaluating the integrals in equai®) and @), the statistics
of the coupling matrices are computed directly. When irdggg a Gaussian field, it is
the limit of a linear combination of Gaussian random vaealdo it is again Gaussian.
The entries of the coupling matrix are therefore Gaussiaabigs and are determined by
their mean and variance. As the mean of the mode shapes eguajsalso the mean of
the coupling matrices equals zero. The varianckf, is computed as follows:

Var (Kop) = fff E[¢u(Lx1. Y, 201u(Laa, Y, Z)] dx(Y, Dpax(y, Z)dZdzdy'dy  (25)

as the mode shapes of the wall (subsystem 2) are determinisths the term
E[#u(Lx, Y, 2d1u(Lx1, Y, Z)] is the covariance function for two points on a reflecting
boundary (equatior2()), this integral becomes:

Var(K2lk|)
= 2A,A2 f f f f jo (kulx = X'|) sin(kaiyy) sin(kawyy') i (Ka2) sin (ka2 ) dz dzdy dy
(26)

where the integrals go from 0 tq, for the ones iry andy’” and from O toL,, for the ones
in zandZ. The distance function in the spherical Bessel functionusmgby|x — X’| =
V({y-y)? + (z- z)2 The quadruple integral equals the following double irgégr

1

1
Var(K2lk|):2A1A§L§2L§2 f f jo(auy u2+y2v2)h(a2ky, u)h(azkz,v) dvdu (27)
00

with ayy = Kylyz, ¥ = Lza/Lya, @2y = Kayly2, oy = KoLz, and:

cos(a)
a

h(a,u) = (1 - u) cos(au) — sin(a(1 — u)) (28)
The integral in equatior() is evaluated numerically at every realization. To redinee t
computational cost, this integral is only evaluated fomaitied number obyy (e.g. 200
linearly spaced values) as the value of the variancéKAar,) changes smoothly over the
frequency. Linear interpolation then yields the variaraeitermediate values @fy.



4. PARAMETRIC UNCERTAINTY QUANTIFICATION

The maximum entropy principle is a powerful tool that enabt®nstructing the
most conservative probability density function of a pareené¢hat is compatible with
all available imprecise information, such as bounds ancetga values. Most of the
uncertain variables in a sound insulation prediction pEoblcan be represented by
continuous random variables. The information measure @fptiobability distribution
function p(x) of a continuous random variabbethat takes values ith C R, can be
defined as:

H (pO0) = - f@ p() Iog(%)dx, (29)

with m(x) Jaynesinvariant measurdéunction, taken to be a uniform distribution over the
interval . The probability distribution function is furthermore gett to one or more of
the following constraints:

f X"p(X)dx = u(X™), m=0,1,2, (30)
D

The probability distribution that is compatible with the adable information but
otherwise minimally informative (or maximally uncertais)obtained by maximizing the
entropy function in equatior2@) under the constraints provided by the informatia8][
Note that when the available information relates multipgmdom variables of the
sound insulation prediction problem, they are statidijcdépendent so that their joint
distribution will in general be dierent from the product of their marginal distributions.

The maximum entropy framework is employed for constructipgpbability
distributions of the physical parameters that govern thdoane sound insulation
of building elements tested in laboratory conditions. Thenns of the uncertain test
facility are assumed to comply with ISO 1014024.[ The uncertain parameters of the
rooms are the volume, the dimensions and the reverberaten t-or the test element,
the probability distributions of the dimensions and thalttiss factor are obtained using
the maximum entropy framework. Also the probability distitions for the measurement
setup, i.e. the number of loudspeakers and their positica,ohtained in this way.
Details on the obtained probability distributions for tllem properties, the test element
properties, and the measurement setup can be fourddjin [

5. APPLICATION

A heavy single-leaf wall, for which experimental resultstabed in multiple
laboratories have been reported in the literature, is studiThe wall has a thickness
of 25cm and consists of calcium silicate blocks with masssigp = 1800 kg'm?,
Young’'s modulus€ = 10.8 GPa, and Poisson’s ratio= 0.2. As assuming a €fuse field
overestimates the variance at low frequencie$,[a deterministic model based on the
hard-walled modes is used for the rooms for frequencies @2%Hz. The mean of the
predicted sound transmission loss and the correspondifg &&nfidence interval for
2000 Monte Carlo simulations are shown in figare

At low frequencies, the modal density of the wall, measuretbss the random
ensemble, is generally low. The first natural frequency efulall is a random variable
that takes values between.561z and 70 Hz. Its probability distribution shows a sharp
peak at 57 Hz, resulting in a pronounced dip in the statistidhe sound transmission
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Figure 1. Predicted sound transmission loss for a calciuricaie block wall:
(a) harmonic and (b) one-third octave band results. Solidebline: mean an®5 %
confidence interval, obtained from 2000 Monte Carlo redimas. Dashed red line: result
for a single realization.

loss at the same frequency. At higher frequencies, the noefaity increases and the
dips caused by individual wall modes become less pronounced critical frequency

of the wall is at 105 Hz, yet no clear coincidence dip is observed because th@almod
density is low and varies strongly with frequency. Behind thitical frequency, the
transmission loss increases between 7 dB and 9 dB per octave.

The uncertainty of the harmonic transmission loss preahistis very large, especially
at low frequencies. Band averaging reduces the uncertdntyas can be observed in
figure1b, the uncertainty remains important. The 95 % confiden@&svats of both walls
are plotted in figure together with the measured values from Meit5|[and indicative
values from 1SO 140-21], ISO 12999-1 16], and Hongisto et al.][7]. These indicative
values are based on a limited number of inter-laboratoreexpents for diferent wall
types, and provide a rough indication of the accuracy thatbmexpected. The large
difference in the 160 Hz and 200 Hz bands indicates a larger aitgrthan would be
expected from the indicative values. This is a result of éngd diference in performance
for these one-third octave bands when no wall modes or ongmmiodes are present.

40
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Figure 2: 95 % confidence interval of the predicted sound transmissios fos the
calcium silicate wall (solid blue line). These are companéth the values corresponding
to the95 % confidence interval of the measured sound transmissior Idggsolid gray
line) and with the values corresponding to the reprodudipif inter-laboratory tests as
listed in ISO 140-21] (dashed red line), ISO 12999-1§] (dotted red line) and Hongisto
et al. [17] (dash-dotted red line).

Figure 3 displays the probability distribution of the single numbatings. This



figure shows that BR,] > E[Ry+C] > E[Ry+Cy], as can be expected, and
Var(R,) < Var(R, + C) < Var(R, + Cy), which is in correspondence with the findings
of Wittstock [18]. Tablel lists the mean and 95 % confidence interval for thiéedent
single number ratings. The 95 % confidence interval is in\ité the indicative values
from 1ISO 12999-116]: 2.0dB forR,, 21dB forR, + C andR,, + Csg_3150, and 24 dB

for Ry + Cy andRy, + Ci 50-3150.

0.5

0.4r

p(g/w) [-]

40 45 56 55 (;0 65

Yw [dB]
Figure 3: Probability distribution of the single number nags ¥,: R, (solid black line),
Ry + C (solid blue line), R + Cy (solid red line), R, + Cso_3150 (dashed blue line), R+
Cir 50-3150 (dashed red line).

Table 1: Mean an®5 %confidence interval of the single number ratings for the icaic
silicate block wall.

Ry[dB] Ry+C[dB] Ry +Cy[dB] Ry + Cspzis0[dB] Ry + Cir50-3150 [dB]
583+15 560+19 521+ 26 559+ 20 511+29

6. CONCLUSIONS

In this paper, a probabilistic framework is presented foargifying the variability
of the sound insulation assessment across a range of pogs#bifacilities that satisfy
the 1ISO 10140-5 standard. The framework combines paramatcertainty quantified
using the maximum entropy principle and nonparametric dac#y resulting from the
assumption of dfuse fields in the rooms. Theftlise wave model is based on the
Gaussian Orthogonal Ensemble and on the assumption of @aulistributed acoustic
mode shapes. The approach is applied to the prediction afriberne sound insulation of
a calcium silicate block wall. The method allows computihg probability distribution
of the sound transmission loss for the acoustic frequenuyaaAs a result, the mean and
the uncertainty of single number ratings can be computed.

7. ACKNOWLEDGEMENTS

The research presented in this paper has been performeth théh frame of the
VirBAcous project (project ID 714591) “Virtual building aastics: a robust andfecient
analysis and optimization framework for noise transmissieduction” funded by the
European Research Council in the form of an ERC Starting (Giidre financial support
is gratefully acknowledged.



8. REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

International Organization for StandardizationlSO 140-2:1991: Acoustics —
Measurement of sound insulation in buildings and of buddalements — Part 2:
Determination, verification and application of precisioatd, 1991.

International Organization for StandardizationlSO 10140-5:2010: Acoustics
— Laboratory measurement of sound insulation of buildingmednts — Part 5:
Requirements for test facilities and equipme@10.

E.T. JaynesProbability Theory. The Logic of Scienc8ambridge University Press,
Cambridge, UK, 2003.

International Organization for Standardizatid80 717-1:2013: Acoustics — Rating
of sound insulation in buildings and of building elementsartA.: Airborne sound
insulation 2013.

K.J. Ebeling. Statistical properties of random waved®elIn W.P. Mason and R.N.
Thurston, editorsPhysical acoustics Vol. XV/lpbages 233—-310. Academic Press,
Orlando, FL, 1984.

R.H. Lyon and R.G. DeJonglrheory and application of statistical energy analysis
Butterworth-Heinemann, Newton, MA, second edition, 1995.

R.L. Weaver. On the ensemble variance of reverberatmomr transmission
functions, the ffect of spectral rigidity. Journal of Sound and Vibratign
130(3):487-491, 1989.

M.L. Mehta. Random MatricesElsevier, San Diego, CA, 3rd edition, 2004.

E.P. Wigner. On the distribution of the roots of certaymsnetric matricesAnnals
of Mathematics67(2):325-327, 1958.

R.K. Cook, R.V. Waterhouse, R.D. Berendt, S. Edelmant &.C. Thompson Jr.
Measurement of correlation cieients in reverberant sound fielddournal of the
Acoustical Society of Americd7(6):1072—-1077, 1955.

R.V. Waterhouse. Interference patterns in reverliesannd fields.Journal of the
Acoustical Society of America7(2):247-258, 1955.

J.H. Rindel.Sound insulation in buildings<CRC Press, Boca Raton, FL, 2018.

E. Reynders. Parametric uncertainty quantificationsofind insulation values.
Journal of the Acoustical Society of Amerid&5(4):1907-1918, 2014.

C. Van hoorickx and E. Reynders. Uncertainty quantifosaof sound transmission
measurement procedures based on the Gaussian OrthogseaiBle. In D. Herrin,

J. Cuschieri, and G. Ebbitt, editoBroceedings of the 47th International Congress
and Exposition on Noise Control Engineering, Inter-Noi€d& Chicago, USA,
August 2018. CD-ROM.

A. Meier, A. Schmitz, and G. Raabe. Inter-laboratorgttef sound insulation
measurements on heavy walls: Part Il - results of main t8stilding Acoustics
6(3—4):171-186, 1999.



[16] International Organization for StandardizatiohSO 12999-1:2014: Acoustics —
Determination and application of measurement uncertasith building acoustics
— Part 1: Sound insulatior2014.

[17] V. Hongisto, J. Keranen, M. Kyllidinen, and J. Mahn. Rsjucibility of the
present and the proposed single-number quantities ofragtsmund insulatiorActa
Acustica united with Acusti¢88(5):811-819, 2012.

[18] V. Wittstock. On the uncertainty of single-number qgtiaes for rating airborne
sound insulationApplied Acoustic93(3):375-386, 2007.



	Introduction
	Prediction model for airborne sound insulation
	System of equations
	Reducing the number of modes
	Sound reduction index

	Non-parametric uncertainty quantification
	Natural frequencies of a diffuse acoustic volume
	Mode shapes of a diffuse acoustic volume
	Computation of the coupling matrices

	Parametric uncertainty quantification
	Application
	Conclusions
	Acknowledgements
	References

