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ABSTRACT

As transmission loss assessment is subject to a significant variability across
a range of possible facilities, virtual round robin testing is applied to assess the
inherent uncertainty of a given measurement procedure on the weighted sound
reduction index. The joint probability distribution of the uncertain parameters is
quantified by means of a maximum entropy approach. A Monte Carlo simulation
is then performed to predict the uncertainty of the sound insulation. At high
frequencies, an efficient method is needed to calculate the sound transmission.A
nonparametric probabilistic method is therefore developed based on the Guassian
Orthogonal Ensemble (GOE), where the wall and the rooms are coupled using
the spatial correlation of room modes. With the presented approach, the sound
reduction index can efficiently be predicted up to high frequencies. This allows
quantifying the uncertainty of the weighted sound reduction index and its spectrum
adaptation terms according to ISO 717-1:2013. Applicationof a calcium silicate
block wall shows good correspondence with indicative values for uncertainty of the
weighted sound reduction index given in ISO 12999-1.
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1. INTRODUCTION

Sound insulation assessment in laboratories is subject to multiple uncertain parameters,
related to the measurement setup, room properties, and testsample dimensions and
damping loss factors. Due to this uncertainty, differences are encountered between
measurements done at different test facilities, which is referred to as reproducibility in
the literature [1]. As a specific problem, the uncertainty in the direct sound reduction
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index assessment of a building component according to ISO 10140-5 [2] is numerically
studied. The measurement setup consists of a source room anda receiver room with a
test element, e.g. a wall, in between. Numerous experimental round robin tests have
been performed to study the variability of the performance of a wall system across
several facilities, but these tests are usually expensive.In this paper, virtual round robin
testing is applied. A probabilistic framework is used for quantifying the combined effect
of all uncertain parameters, constructing their joint probability distribution by means
of a maximum entropy approach [3]. The distribution that is obtained in this way is
compatible with the available information (taken from ISO 10140-5 and literature) but
otherwise maximally conservative so that no conclusions can be drawn that are not
warranted by the available information.

For quantifying the uncertainty of the predicted sound transmission loss values, a
Monte Carlo approach is employed. Statistically independent samples of the random
parameters are generated in accordance with their joint probability distribution. For
each set of generated parameter values, corresponding to a realization of a transmission
suite, the sound reduction index is calculated. For predicting the sound transmission
loss in a design situation, a suitable mathematical model isneeded. In this paper, a
novel non-parametric probabilistic method is presented based on the Gaussian Orthogonal
Ensemble. The test element is modeled deterministically while the acoustic fields of
the rooms are assumed diffuse. The rooms and the wall are coupled using the spatial
correlation of the room modes and an analytical expression of the wall modes. The model
allows computing the sound transmission in a computationally efficient way up to high
frequencies, combining parametric and non-parametric uncertainty in the Monte Carlo
simulation. A set of statistically independent samples of the weighted sound reduction
index can then be calculated, from which its mean, variance,probability distribution, etc.
can be estimated.

The paper is organized as follows. First, the prediction model is described, after which
the diffuse model for the natural frequencies and modeshapes is discussed. The parametric
uncertainty quantification based on the maximum entropy approach is reviewed. The
paper concludes with the application of a calcium silicate block wall.

2. PREDICTION MODEL FOR AIRBORNE SOUND INSULATION

2.1. System of equations

The transmission loss is computed using the assumed-modes method, approximating
the pressure fields of the source roomp1 and reveiver roomp3 and the vibration field of
the wallu2 into a finite set of basis functions:

p1/3 ≈
n1/3
∑

k=1

φ1/3k(x, y, z)q1/3k(ω) = φ1/3q1/3 u2 ≈
n2
∑

k=1

φ2k(y, z)q2k(ω) = φ2q2 (1)

Inserting these approximations into Lagrange’s equationsof motion and adopting a
hysteretic damping model yields the following linear system of equations:
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where
Dkk = −ω2I k + ω

2
k(1+ iηk) (3)



with i the imaginary unit andωk the diagonal matrix containing the circular undamped
eigenfrequencies for subsystemk corresponding to the mode shapes inφk. The damping
loss factors of the rooms are computed from their reverberation times viaη = 4.4π/(ωT).
Thenp loudspeakers are modeled as point monopoles acting at positions (xp j , yp j , zp j) with
volume accelerationsap(ω). Elementk of the loading vectorf1 therefore reads

f1k(ω) = −ρaap(ω)
np
∑

j=1

φ1k(xp j , yp j , zp j) (4)

The matricesK 12 andK 32 are coupling matrices that represent the loading on the room
due to the plate movement, andK 21 andK 23 represent the loading on the plate due to the
room pressure. The elements of the coupling matrices are:

K21,kl =

∫ Ly2

0

∫ Lz2

0
φ1l(Lx1, y, z)φ2k(y, z)dzdy K12,kl = −ρaω

2K21,lk (5)

K23,kl =

∫ Ly2

0

∫ Lz2

0
φ3l(Lx1, y, z)φ2k(y, z)dzdy K32,kl = −ρaω

2K23,lk (6)

The computations require the natural frequencies and mode shapes of the subsystems
to be computed. The rooms are modeled as diffuse subsystems, whose natural frequencies
and mode shapes are computed in section3. The wall is assumed to be a deterministic
subsystem. Its natural frequencies are given by:

ω2k =

√
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m′′2
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with D2 the bending stiffness,m′′2 the mass of the wall per unit area,Ly2 the width, andLz2

the height of the wall. The integersmky andnkz represent the number of half wavelengths
in the plate dimensions. The mode shapes of the wall are calculated as follows:

φ2k =
2

√

m′′2 Ly2Lz2

sin

(

mkyπy

Ly2

)

sin

(

mkzπz
Lz2

)

= A2 sin
(

k2kyy
)

sin(k2kzz) (8)

2.2. Reducing the number of modes

In order to efficiently solve equation (2), one should note that the number of modes
in the rooms is generally much higher than the number of modesin the wall between the
two rooms. It is therefore advantageous to perform row reduction on the block matrices
to reduce the size of the system of equations in equation (2). This yields:

Aq2 = b (9)

where the elements of the matricesA andb are given by:

Ai j = D22,i j + ρω
2

n1
∑

k=1

K21,ikK21, jk

D11,kk
+ ρω2

n3
∑

k=1

K23,ikK23, jk

D33,kk
bi = −

n1
∑

k=1

K21,ik f1k

D11,kk
(10)

The energy in the source and receiver room can then be computed as:

E1 =
1
ρa

n1
∑

k=1
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Note that for solving the system of equations, sums are needed over expressions with
D11,kk or D33,kk in the denominator. As these are very small forω1k ≈ ω andω3k ≈ ω,
respectively, it is sufficient to take a limited number of modes in the vicinity of the
considered frequency, as the contribution of these modes dominates the summations.
Under the assumption that the numerator of these sums is moreor less constant in the
vicinity of the considered frequencies, the relative errorǫ made by only looking at a
frequency range [ω − a, ω + a] equals:

ǫ = 1− 2
π

arctan

(

2a
ωη

)

(12)

Only taking a limited number of modes into account leads to anunderestimation of the
total response. This error can be corrected for by multiplying the sums in equations (10)
and (11) by a factorγ, which is given by:

γ =
1

1− ǫ
=

π

2 arctan
(

2a
ωη

) (13)

2.3. Sound reduction index

The sound reduction indexR is computed with the measurement formula:

R= 10 log10

(

E1

V1

)

− 10 log10

(

E3

V3

)

+ 10 log10

(

S2

A3

)

(14)

in whichV1 andV3 are the volume of the source and receiver room,S2 is the surface area
of the partition, andA3 is the absorption of the receiver room.

Using the computed one-third octave band values of the soundreduction index in the
bands with a center frequency between 100 Hz and 3150 Hz, the weighted sound reduction
indexRw and the spectrum adaptation termsC, Ctr, C50−3150, andCtr,50−3150 are calculated
according to ISO 717-1:2013 [4]. The uncertainty is assessed by computing the single
number ratings for every realization from which the mean, standard deviation, probability
density function, etc. can be calculated

3. NON-PARAMETRIC UNCERTAINTY QUANTIFICATION

The wave fields in the rooms are modeled as diffuse fields. A diffuse wave field is
a random field, composed of plane waves coming from all directions, with statistically
independent and uniformly distributed phases and zero-mean, uncorrelated amplitudes
with equal variance [5]. High-frequency analysis methods such as statistical energy
analysis (SEA) [6] rely on the wave-based or modal-based descriptions of diffuse fields.
However, the conventional SEA allows only for the mean response quantities to be
computed. When also the variance is of interest, an extension of the diffuse field model
is necessary. Weaver [7] found that, for the generic case where the considered spatial
uncertainty does not preserve symmetries, the statistics of the local eigenvalue spacings
saturate to those of the Gaussian Orthogonal Ensemble (GOE)matrix from random
matrix theory [8]. The GOE model can be used to obtain the mean and variance of a
subsystem’s total energy.



3.1. Natural frequencies of a diffuse acoustic volume

The following analysis is concerned with the response of a finite acoustic volume in
a frequency range for which the GOE model is valid. As in this frequency range, the
statistics of the local eigenvalue spacings saturate to those of the GOE, a nonparametric
description of the spacings distribution can be used. The frequency range of interest is
assumed finite, with a lower boundωl and an upper boudωu. For a specific subsystem,
the expected total numberNint of eigenvalues in the frequency range of interest can be
determined as:

Nint =

∫ λu

λl

nλ(λ)dλ =
∫ ωu

ωl

n(ω)dω, (15)

whereλ := ω2, andnλ(λ) represents the local eigenvalue density, which is relatedto the
modal density by

nλ(ω2) =
n(ω)
2ω
. (16)

The GOE matrixGnG(σG) is a real symmetric matrix with dimensionsnG × nG. The
elements with different indices are independent, centered Gaussian random variables. The
diagonal elements have variance 2σ2

G and the off-diagonal elements have varianceσ2
G,

where the parameterσG serves to specify an eigenvalue scale. BecauseGnG(σG) is real
and symmetric, it hasnG eigenvaluesλGr that are purely real.

Wigner has shown [9] that the density of the eigenvaluesλG of the GOE matrixnλG(λG),
which are real and centered around zero, converges, fornG→ ∞, to

nλG(λG) =
2nG

πr

√

1−
λ2

G

r2
, −r < λG < r, (17)

with r := 2σG
√

nG. The cumulative count function of GOE eigenvalues in the range
[−λGu, λG] therefore equals

NG(λG) =
nG

πr2
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To obtain a monotonically increasing functionNG(λG) in the range [0,Nint], λGu is
numerically computed by imposingNG(λGu) = Nint.

The cumulative count function of acoustic eigenvalues in the range of interest [λl, λu]
is obtained as

N(λ) =
∫ λ

λl

nλ(λ)dλ. (19)

This is a monotonically increasing function (just asNG(λG)) and therefore invertible.
The range is again [0,Nint]. Application of the inverse function to the uniform random
variables then yields a set of eigenvaluesλ for the physical system having the correct
densitynλ(λ):

λ = N−1 (NG(λG)) . (20)

In summary, a set of eigenvalue realizations for the acoustic volume is obtained as
follows. The number of expected eigenvalues in the frequency range of interestNint is
first computed from (15). Then, for a realization of the GOE matrix, its eigenvaluesare



computed and the range [−λGu, λGu] is obtained from imposingNG(λGu) = Nint. Finally,
the GOE eigenvalue realizations are transformed into acoustic eigenvalue realizations
using (20). This procedure can be performed for the entire frequency range of interest
[λl, λu] or for different frequency intervals in order to decrease the size of the GOE
matrices and therefore the computation cost of their eigenvalues. An important advantage
of the this procedure is that the normalized GOE eigenvalue spacings do not depend on
any physical property. This implies that the computed realizations can be tabulated and
re-used.

3.2. Mode shapes of a diffuse acoustic volume

The mode shapes of a room in high-frequency regime can be interpreted as standing
waves that arise from many traveling plane wave components.Adopting a diffuse acoustic
field model, the pressure mode shape at a given location consists of a summation of
independent plane acoustic waves with the same mean amplitude and uncorrelated phases,
coming from all directions with equal probability. It then follows from the central limit
theorem that the acoustic mode shapes are zero-mean, Gaussian random fields. A zero-
mean Gaussian random field is uniquely determined by its covariance function.

For diffuse reflecting boundaries, the mode shapesϕsr are statistically homogenous,
i.e., the statistics of the pressure mode shape components are independent of their
position. The corresponding random wave field is a diffuse field. For three-dimensional
volumes, its covariance function then has the form [10]:

Csr
(

x, x′
)

=















Asj0 (ksr|x − x′|) for 2 points in the acoustic room

2Asj0 (ksr|x − x′|) for 2 points on a reflecting boundary
(21)

where j0(x) = sin(x)/x is the spherical Bessel function of the first kind and order zero,
ksr := 2π

λsr
denotes the wavenumber corresponding to the wavelengthλsr of moder for

subsystems, andAs is a factor that is independent of position, which can be determined
from the mode shape normalization condition. In an acousticenclosureΩ with volume
Vs, the normalization condition reads:

∫

Ω

1
c2
ϕsr

2(x)dx = 1 ⇔ As =
c2

Vs
. (22)

The correlation function (21) depends only on the distance between the considered mode
shape components, the wavelength and the total volume. Close to perfect reflecting
boundaries, the mean squared sound pressure is twice the mean squared sound pressure
in the center of the room [11]. Because of this, a factor two appears in the covariance
function (21) for points located on the reflecting structural element [12].

Realizations of the mode shape vectorϕsr(x) can be obtained from a discrete Karhunen-
Loève decomposition: with the eigenvalue decomposition ofthe covariance matrix

Csr := AΣAT . (23)

the corresponding mode shape vector is

ϕsr := AΣ
1
2ξ, (24)

whereξ is a vector of independent, standard normal random variables that can be realized
with a Gaussian random number generator.



However, to compute the coupling matrices in equations (5) and (6), the mode
shapes are needed over the wall surface, which requires a finemesh, especially at high
frequencies. This implies a large covariance matrix and therefore a computationally
expensive eigenvalue decomposition. To reduce the computational cost, the wave field
close to the wall is assumed to be statistically uncorrelated from the wave field at the
loudspeaker positions, which is reasonable as the loudspeakers are located at a significant
distance from the wall and the covariance matrix in equation(21) decreases strongly with
distance. Therefore, the discrete Karhunen-Loève decomposition is used to obtain the
mode shapes at the positions of the loudspeakers in order to compute the loading vector
in equation (4). The coupling matrices are computed independently as outlined in the
next subsection.

3.3. Computation of the coupling matrices

Instead of numerically evaluating the integrals in equations (5) and (6), the statistics
of the coupling matrices are computed directly. When integrating a Gaussian field, it is
the limit of a linear combination of Gaussian random variables so it is again Gaussian.
The entries of the coupling matrix are therefore Gaussian variables and are determined by
their mean and variance. As the mean of the mode shapes equalszero, also the mean of
the coupling matrices equals zero. The variance ofK21,kl is computed as follows:

Var
(

K21,kl
)

=

&
E

[

φ1l(Lx1, y, z)φ1l(Lx1, y
′, z′)

]

φ2k(y, z)φ2k(y
′, z′)dz′dzdy′dy (25)

as the mode shapes of the wall (subsystem 2) are deterministic. As the term
E

[

φ1l(Lx1, y, z)φ1l(Lx1, y′, z′)
]

is the covariance function for two points on a reflecting
boundary (equation (21)), this integral becomes:

Var
(

K21,kl
)

= 2A1A
2
2

&
j0

(

k1l |x − x′|
)

sin
(

k2kyy
)

sin
(

k2kyy
′
)

sin(k2kzz) sin
(

k2kzz
′) dz′dzdy′dy

(26)

where the integrals go from 0 toLy2 for the ones iny andy′ and from 0 toLz2 for the ones
in z andz′. The distance function in the spherical Bessel function is given by |x − x′| =
√

(y− y′)2 + (z− z′)2. The quadruple integral equals the following double integral:

Var
(

K21,kl
)

= 2A1A2
2L2

y2L2
z2

1
∫

0

1
∫

0

j0
(

a1ly

√

u2 + γ2v2
)

h
(

a2ky, u
)

h (a2kz, v) dvdu (27)

with a1ly = k1lLy2, γ = Lz2/Ly2, a2ky = k2kyLy2, a2ky = k2kzLz2, and:

h (a, u) = (1− u) cos(au) − cos(a)
a

sin(a(1− u)) (28)

The integral in equation (27) is evaluated numerically at every realization. To reduce the
computational cost, this integral is only evaluated for a limited number ofa1ly (e.g. 200
linearly spaced values) as the value of the variance Var

(

K21,kl
)

changes smoothly over the
frequency. Linear interpolation then yields the variance for intermediate values ofa1ly.



4. PARAMETRIC UNCERTAINTY QUANTIFICATION

The maximum entropy principle is a powerful tool that enables constructing the
most conservative probability density function of a parameter that is compatible with
all available imprecise information, such as bounds and expected values. Most of the
uncertain variables in a sound insulation prediction problem can be represented by
continuous random variables. The information measure of the probability distribution
function p(x) of a continuous random variablex that takes values inD ⊆ R, can be
defined as:

H (p(x)) := −
∫

D
p(x) log

(

p(x)
m(x)

)

dx, (29)

with m(x) Jaynes’invariant measurefunction, taken to be a uniform distribution over the
intervalD. The probability distribution function is furthermore subject to one or more of
the following constraints:

∫

D
xmp(x)dx = µ (xm) , m= 0, 1, 2, (30)

The probability distribution that is compatible with the available information but
otherwise minimally informative (or maximally uncertain)is obtained by maximizing the
entropy function in equation (29) under the constraints provided by the information [13].
Note that when the available information relates multiple random variables of the
sound insulation prediction problem, they are statistically dependent so that their joint
distribution will in general be different from the product of their marginal distributions.

The maximum entropy framework is employed for constructingprobability
distributions of the physical parameters that govern the airborne sound insulation
of building elements tested in laboratory conditions. The rooms of the uncertain test
facility are assumed to comply with ISO 10140-5 [2]. The uncertain parameters of the
rooms are the volume, the dimensions and the reverberation time. For the test element,
the probability distributions of the dimensions and the total loss factor are obtained using
the maximum entropy framework. Also the probability distributions for the measurement
setup, i.e. the number of loudspeakers and their position, are obtained in this way.
Details on the obtained probability distributions for the room properties, the test element
properties, and the measurement setup can be found in [13].

5. APPLICATION

A heavy single-leaf wall, for which experimental results obtained in multiple
laboratories have been reported in the literature, is studied. The wall has a thickness
of 25 cm and consists of calcium silicate blocks with mass density ρ = 1800 kg/m3,
Young’s modulusE = 10.8 GPa, and Poisson’s ratioν = 0.2. As assuming a diffuse field
overestimates the variance at low frequencies [14], a deterministic model based on the
hard-walled modes is used for the rooms for frequencies up to225 Hz. The mean of the
predicted sound transmission loss and the corresponding 95% confidence interval for
2000 Monte Carlo simulations are shown in figure1.

At low frequencies, the modal density of the wall, measured across the random
ensemble, is generally low. The first natural frequency of the wall is a random variable
that takes values between 56.5 Hz and 70 Hz. Its probability distribution shows a sharp
peak at 57 Hz, resulting in a pronounced dip in the statisticsof the sound transmission
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Figure 1: Predicted sound transmission loss for a calcium silicate block wall:
(a) harmonic and (b) one-third octave band results. Solid blue line: mean and95 %
confidence interval, obtained from 2000 Monte Carlo realizations. Dashed red line: result
for a single realization.

loss at the same frequency. At higher frequencies, the modaldensity increases and the
dips caused by individual wall modes become less pronounced. The critical frequency
of the wall is at 102.5 Hz, yet no clear coincidence dip is observed because the modal
density is low and varies strongly with frequency. Behind the critical frequency, the
transmission loss increases between 7 dB and 9 dB per octave.

The uncertainty of the harmonic transmission loss predictions is very large, especially
at low frequencies. Band averaging reduces the uncertainty, but as can be observed in
figure1b, the uncertainty remains important. The 95 % confidence intervals of both walls
are plotted in figure2 together with the measured values from Meier [15] and indicative
values from ISO 140-2 [1], ISO 12999-1 [16], and Hongisto et al. [17]. These indicative
values are based on a limited number of inter-laboratory experiments for different wall
types, and provide a rough indication of the accuracy that can be expected. The large
difference in the 160 Hz and 200 Hz bands indicates a larger uncertainty than would be
expected from the indicative values. This is a result of the large difference in performance
for these one-third octave bands when no wall modes or one or two modes are present.
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Figure 2: 95 % confidence interval of the predicted sound transmission loss for the
calcium silicate wall (solid blue line). These are comparedwith the values corresponding
to the95 %confidence interval of the measured sound transmission loss[15] (solid gray
line) and with the values corresponding to the reproducibility of inter-laboratory tests as
listed in ISO 140-2 [1] (dashed red line), ISO 12999-1 [16] (dotted red line) and Hongisto
et al. [17] (dash-dotted red line).

Figure 3 displays the probability distribution of the single numberratings. This



figure shows that E [Rw] > E [Rw +C] > E [Rw +Ctr], as can be expected, and
Var(Rw) < Var(Rw +C) < Var(Rw +Ctr), which is in correspondence with the findings
of Wittstock [18]. Table1 lists the mean and 95 % confidence interval for the different
single number ratings. The 95 % confidence interval is in linewith the indicative values
from ISO 12999-1 [16]: 2.0 dB for Rw, 2.1 dB for Rw + C andRw + C50−3150, and 2.4 dB
for Rw +Ctr andRw +Ctr,50−3150.
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Figure 3: Probability distribution of the single number ratings Yw: Rw (solid black line),
Rw + C (solid blue line), Rw +Ctr (solid red line), Rw +C50−3150 (dashed blue line), Rw +
Ctr,50−3150 (dashed red line).

Table 1: Mean and95 %confidence interval of the single number ratings for the calcium
silicate block wall.

Rw [dB] Rw +C [dB] Rw +Ctr [dB] Rw +C50−3150 [dB] Rw +Ctr,50−3150 [dB]
58.3± 1.5 56.0± 1.9 52.1± 2.6 55.9± 2.0 51.1± 2.9

6. CONCLUSIONS

In this paper, a probabilistic framework is presented for quantifying the variability
of the sound insulation assessment across a range of possible test facilities that satisfy
the ISO 10140-5 standard. The framework combines parametric uncertainty quantified
using the maximum entropy principle and nonparametric uncertainty resulting from the
assumption of diffuse fields in the rooms. The diffuse wave model is based on the
Gaussian Orthogonal Ensemble and on the assumption of Gaussian distributed acoustic
mode shapes. The approach is applied to the prediction of theairborne sound insulation of
a calcium silicate block wall. The method allows computing the probability distribution
of the sound transmission loss for the acoustic frequency range. As a result, the mean and
the uncertainty of single number ratings can be computed.
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