
Numerical and experimental studies on impact sound radiated
by rib-stiffened plates

Pengchao Wang1

Cédric Van hoorickx2

Geert Lombaert3

Edwin Reynders4

KU Leuven, Department of Civil Engineering, Structural Mechanics Section
Kasteelpark Arenberg 40, Box 2448, 3001 Leuven, Belgium

ABSTRACT

Rib-stiffened plates are widely applied in civil engineering as they achieve
a similar static stiffness as plain plates with a substantially lower weight.
Unfortunately, this generally leads to a reduced impact sound insulation. The
quantitative assessment of the impact sound insulation of rib-stiffened plates is
complex for most of the acoustic frequency range. At the frequencies where the
wavelength of deformation is much larger than the stiffener spacing, the stiffeners
induced orthotropy leads to an increased width of the coincidence zone. At high
frequencies, the point impedance is much larger at the ribs than in between them.
This work aims at gaining insight in the impact sound radiation performance of
rib-stiffened plates. To this end, a dedicated impact sound computation model is
proposed. A finite element model of a rib-stiffened PMMA plate is constructed,
in which the mechanical properties are calibrated using experimentally obtained
modal characteristics. This model is coupled to a diffuse model of an adjacent room,
and the predicted impact sound radiation is validated by measurements. Finally,
the effect of adding stiffeners is numerically investigated by comparing the sound
radiation efficiency, vibration level, and impact sound radiation of the rib-stiffened
plate and simulated plane PMMA plates with equivalent static stiffnesses.
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1. INTRODUCTION

Rib-stiffened plates are widely applied in civil engineering as they achieve an
equivalent static stiffness as plain plates with a lower weight. Unfortunately, it is
challenging for rib-stiffened plates to achieve impact sound insulation that is as good as
heavyweight plane plates.

The quantitative assessment of the impact sound insulation of rib-stiffened plates is
complex at a wide frequency range. The stiffeners induce orthotropy to the isotropic
plates [1]. At lower frequencies where the structural wavelength is much larger than the
stiffener spacing, the additional bending stiffness of the discrete stiffeners is considered
as uniformly averaged over the plate surface [2]. The sound radiation is characterized
by a coincidence zone that is bounded by two coincidence frequencies. The lower and
higher coincidence frequencies are related to the structural wavelength in the stiffened and
unstiffened directions, respectively [3]. At frequencies where the structural wavelength is
much smaller than the stiffener spacing, the inter-stiffener parts of the plate are considered
as small individual panels. The sound radiation efficiency of the entire plate, contributed
by the regions along the edges of the individual panels, is much higher than the one of the
unstiffened plate [4]. The impact sound radiation at high frequencies depends also on the
impact locations, since the driving point impedance is much larger above the ribs than in
between them.

A series of studies has been performed on the impact sound radiation of periodical
rib-stiffened structures. Mejdi and Atalla [5] performed a semi-analytical model to
compute the point force induced sound radiation by rib-stiffened plates. Legault et al. [6]
developed a periodic model to compute the impact sound radiated by stiffened structures,
assumed as infinitely expanded. Fu et al. [7] analytically analyzed the influences of modal
coupling terms, boundary conditions, and stiffener spacing on the point force induced
sound radiation by ribbed plates. The vibro-acoustic analysis of rib-stiffened structures
has also been numerically performed using the finite element (FE) method [8, 9], the
boundary element method [10], the transfer matrix method [11], etc. Nevertheless, the
vibro-acoustic analysis of the rib-stiffened structures remains challenging.

The aim of this work is to study the impact sound radiated by rib-stiffened plates
into adjacent acoustic fields, both numerically and experimentally. The outline of the
paper is as follows. Section 2 introduces a numerical model to compute the impact
sound radiated by plates. Next, section 3 describes the FE model of the considered rib-
stiffened polymethyl methacrylate (PMMA) plate, of which the mechanical properties
and boundary conditions were of special concern. Section 4 performs an experimental
validation of the computed impact sound radiation. In section 5, the rib-stiffened plate was
additionally modeled as an orthotropic plane plate to determine the equivalent bending
stiffnesses in different directions. The sound radiation efficiency, vibration level and
impact sound radiation of the rib-stiffened plate are compared to the ones of numerically
modeled plane PMMA plates with comparable bending stiffnesses. Finally, section 6
concludes the work.

2. IMPACT SOUND COMPUTATION MODEL

This section describes an approach to compute the impact sound radiated by a plate
into an adjacent room. A wide frequency range is considered, e.g., from 50 Hz to 4000 Hz.
The structural vibration of the plate is computed in full detail using the FE method. Using



an FE model of the room at middle and high frequencies is computationally expensive,
since a large number of degrees of freedom (DOFs) are needed to compute the short-
wavelength deformation [12]. Moreover, as the room acoustic field is sensitive to small
wave scattering elements [13], the acoustic response computed by a deterministic system
loses its meaning. In this work, the local room geometry and configuration are assumed
as highly uncertain, and the room is modeled as a pure-tone diffuse field. The equation of
the motion for the plate, that is discretized by the FE method, is written as

Dsû = f̂, (1)

where û and f̂ ∈ Cndof are the displacement and excitation force vectors, with ndof the
number of structural DOFs. Ds ∈ C

ndof×ndof is the structural dynamic stiffness matrix. At
any angular frequency ω, the structural displacement at an arbitrary coordinate x due to
an excitation at x0 can be computed by means of modal decomposition:

û(ω, x) =

Nm∑
j=1

φ j(x)φ j(x0) f̂ (x0)
−ω2 + ω2

j + iηsωω j
, (2)

where φ j ∈ R
ndof and ω j are the mode shape and angular natural frequency of the structural

mode j, Nm is the number of structural modes that are considered to contribute the
structural response, and ηs is the structural damping loss factor. The sound power radiated
by an infinitely baffled plate into an adjacent direct field is given by

Prad =
ω

2
Im{ûH(ω)Ddirû(ω)}, (3)

in which Ddir ∈ C
ndof×ndof is the dynamic stiffness matrix of the direct field, as seen from

the plate-room interface [14]. The notation (·)H denotes the Hermitian transpose, i.e.,
ûH = û∗T. The power Prad in the direct field flows into the diffuse field of the room and
dissipated, such that

Prad = Pdiss, (4)

where Pdiss is the power dissipated in the diffuse field. At any angular frequency ω, the
dissipated power Pdiss in the diffuse field is expressed as

Pdiss = ωηaÊa, (5)

in which ηa is the damping loss factor of the room, and Êa is the sound energy in the
room. Using Equations 3 to 5, the sound energy Êa in the room is easily computed. The
normalized impact sound pressure level in the room equals

Ln = 10 log
Êaρ0c2

V p2
0

+ 10 log
A
A0
, (6)

where A is the absorption area in the room, and p0 = 2 × 10−5 Pa and A0 = 10 m2 are the
reference sound pressure and the reference absorption area, respectively. The absorption
area A is computed using Sabine’s formula:

A =
0.16V

Ta
, (7)

in which V and Ta are the reverberation time and the volume of the room.



3. FE MODEL OF A RIB-STIFFENED PMMA PLATE

Figure 1 shows the rib-stiffened PMMA plate considered in this work, which is
mounted in a small vertical opening in the KU Leuven Acoustics Laboratory. The room
at each side of opening has a volume of V = 87 m3. Figure 2 displays the geometry of the
rib-stiffened plate. The base plate has a width of Lx = 1.235 m, a height of Ly = 1.485 m,
and a thickness of tp = 15 mm. The base plate is attached to 11 steel L30 stiffeners,
which have an outer leg length of Ls = 30 mm and a thickness of ts = 3 mm. The
center-to-center spacing between the stiffeners is dx = 100 mm. The distance between a
vertical edge of the plate and the closest vertical edge of the stiffeners is ax = 102.5 mm,
and the distance between a horizontal edge of the plate and the closest end section of a
stiffener is ax = 52.5 mm. Each stiffener is glued to the base plate over the entire contact
surface, and additionally screwed to the base plate at four points [15].

Figure 1: The plate mounted in the small
vertical transmission opening of the KU
Leuven Acoustics Laboratory.
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Figure 2: Geometry of the rib-stiffened
PMMA plate (front, top, and side view).

Sections 3.1 and 3.2 describe two essential steps of constructing a FE model for the
plate: the calibration of the mechanical properties, and the determination of the boundary
conditions in the laboratory setup in figure 1. Both steps were performed based on the
experimentally identified mode shapes and natural frequencies of the plate in different
measurement setups.

3.1. Calibration of mechanical properties

A dynamic test was performed on this plate in order to identify its bending mode shapes
and natural frequencies. Figure 3 illustrates the measurement setup, in which the plate
was freely suspended by ropes to approximate free-free boundary conditions. The plate
was perpendicularly excited by a hammer at a corner, and the out-of-plane acceleration
was measured by accelerometers at a total of 35 positions in two individual accelerometer
setups. A sampling frequency of 1000 Hz was used.

An acceleration-based modal analysis for each beam was performed using MACEC,
a Matlab toolbox for experimental and operational modal analysis [16]. The Combined
deterministic-stochastic Subspace Identification (CSI) algorithm [17] was applied,
in which both the input force and the output acceleration data were used for the
identification. Figures 4 shows the mode shapes and natural frequencies of 10 identified
out-of-plane bending modes.

A FE model of the rib-stiffened plate was constructed in ANSYS. Both the base plate
and the stiffeners were modeled with four-node linear shell elements (of the SHELL181



type). The base plate and the stiffeners were rigidly connected over their contact surfaces,
and free-free boundary conditions were assumed in the model. Next, the mechanical
properties of the plate were estimated by a model calibration process, in which the
identified eigenmodes shown in Figure 4 were compared with the ones computed by the
FE model. The Young’s moduli of the base plate and the stiffeners, Ep and Es, and the
Poisson’s ratio of the base plate νp were chosen as calibration parameters. The Poisson’s
ratio of the stiffeners, and the densities of the base plate and the stiffeners were taken as
νs = 0.3, ρp = 1170 kg/m3, and ρs = 7850 kg/m3, respectively.

Figure 3: Measurement setup of
the dynamic test on the plate with
free-free boundary conditions.

8.93 Hz 12.52 Hz 19.72 Hz 34.05 Hz

40.66 Hz 54.32 Hz 54.97 Hz 64.77 Hz

72.27 Hz 82.36 Hz
Figure 4: Mode shapes and natural freuqencies of
10 identified out-of-plane bending modes of the plate
with free-free boundary conditions.

Calibration parameters were updated by minimizing the sum of squared distances d j

between each identified mode j and the closest computed mode. The distance d j is given
as a function of Ep, Es, and νp:

d j(Ep, Es, νp) =
| fid, j − fc, j(Ep, Es, νp)|

max
(

fid, j, fc, j(Ep, Es, νp)
) + 1 −MAC

(
φid, j,φc, j(Ep, Es, νp)

)
, (8)

in which the subscripts ‘id’ and ‘c’ indicates identified and computed values, respectively.
The modal assurance criterion (MAC) [18] measures the degrees of correspondence
between the identified and computed mode shapes:

MAC
(
φid, j,φc, j(Ep, Es, νp)

)
=
|φT

id, jφc, j(Ep, Es, νp)|2

||φid, j||
2||φc, j(Ep, Es, νp)||2

. (9)

A MAC value close to unity indicates perfect correspondence of the mode shapes,
while a significantly lower value indicates linear independence of mode shapes. An
objective function is then defined as the sum of squared distances for modes 1 to 10:

fobj(Ep, Es, νp) =

10∑
j=1

d2
j(Ep, Es, νp). (10)

The minimization of fobj(Ep, Es, νp) is a nonlinear least-squares problem that
was numerically solved by an iterative, trust-region-reflective Newton method in
Matlab (lsqnonlin routine with a tolerance of 10−5 on the three calibration parameters
and the objective function fobj(Ep, Es, νp)) [15]. In each iteration, the mode shapes and
natural frequencies were computed by the FE model, using the temporarily updated



values of the three calibration parameters. During the calibration, the values of the three
calibration parameters were taken from realistic ranges of 0.5 GPa ≤ Ep ≤ 10 GPa,
50 GPa ≤ Es ≤ 300 GPa, and 0.3 ≤ νp ≤ 0.45. The optimized results are Ep = 1.65 GPa,
Es = 209.53 GPa, and νp = 0.38, and the corresponding value of the objective function in
Equation 10 is 0.047. Figure 5 shows the relative differences of mode shapes and natural
frequencies, which indicate good correspondence between the identified and computed
modal results.
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Figure 5: Relative differences of (a) mode shapes (measured as 1 − MAC) and (b)
natural frequencies between 10 identified and computed modes of the plate with free-free
boundary conditions.

3.2. Determination of boundary conditions

To gain an insight in the boundary conditions of the plate in the laboratory step (figure
1), a roving hammer test was performed, during which the plate was excited with
an impact hammer at 63 different positions, and the acceleration was measured with
accelerometers at nine fixed positions. A sampling frequency of 1000 Hz was used.
The experimental data was processed, during which a frequency response function
(FRF) matrix between the hammer and accelerometer locations was computed using the
H1 estimator [19, p.141]. Next, a parametric right matrix fraction description model
was fitted to the FRF matrix using the poly-reference least squares complex frequency
domain (pLSCF) method [20, 21]. Finally, modes were selected from a stabilized
diagram. Figure 6 displays the mode shapes and natural frequencies of eight identified
out-of-plane bending modes of the mounted plate.

27.19 Hz 39.31 Hz 63.57 Hz 98.18 Hz 113.88 Hz 139.73 Hz 180.50 Hz 190.10 Hz

Figure 6: Mode shapes and natural frequencies of 8 identified out-of-plane bending
modes of the mounted plate.

In the FE model, the translations along the bottom edge of the plate were fixed,
assuming that this edge is greatly restrained by the opening. For the other three
edges, only the out-of-plane translations were restrained. Figure 7 displays the relative



differences of mode shapes and natural frequencies between the eight identified modes
(in figure 6) and the modes computed with the FE model. As good correspondence
between the identified and computed modes are achieved, these conditions are applied in
the remainder of the work.
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Figure 7: Relative differences of (a) mode shapes
(measured as 1 − MAC) and (b) natural frequencies
between eight identified and computed modes of the
mounted plate.

Figure 8: 11 rib impact
positions and 10 inter-rib
impact positions in the impact
sound radiation measurement.

4. EXPERIMENTAL VALIDATION

In this section, the computed impact sound radiation is discussed and experimentally
validated. Section 4.1 describes the measurement setups of an impact sound radiation test
and a structural reverberation test. Section 4.2 discusses the validation of the computed
sound pressure levels.

4.1. Measurement setup

In the impact sound radiation test, the plate was excited using an instrumented hammer
at 11 positions above the stiffeners and 10 positions between the stiffeners, which are
indicated as ‘rib positions’ and ‘inter-rib positions’, respectively. The impact positions are
shown in figure 8. For each impact position, repetitive impacts were given for a period of
40 s, and the input hammer force signal was acquired. The resulting sound pressure levels
were sampled at eight microphone positions in the central zone of the receiving room.

A structural reverberation test was also performed to determine the structural damping
ηs. Single impulse excitations were given by a hammer at 20 positions in the central part of
the plate, and the resulting acceleration was acquired by accelerometers at 15 positions.
The structural reverberation time Ts, corresponding to the decay of the vibration level
by 60 dB after an impulse excitation on the structure, is evaluated using an integrated
impulse response method in ISO-3382 [22]. The structural damping loss factor at an
angular frequency ω is computed by

ηs =
4.4π
ωTs

. (11)

In addition, to compute the sound pressure levels in the room using Eqs. (5) to (6), the
values of the acoustic reverberation time, the sound speed, and the air density are taken



as Ta = 1.5 s, c = 343 m/s, and ρ0 = 1.2 kg/m3, respectively. The acoustic damping loss
factor at an angular frequency ω is computed by

ηa =
4.4π
ωTa

. (12)

4.2. Validation of computed sound pressure levels

Figure 10 displays the power spectrum densities (PSDs) of the impact force spectra for
the hammer excitation on 11 rib positions and 10 inter-rib positions. The impact forces
applied at different impact positions were of the same magnitude. Figure 11 shows the
measured and computed normalized harmonic sound pressure levels in the receiving room
that are averaged over excitations at 11 rib and 10 inter-rib positions, respectively. The
results are computed for the experimental hammer impact forces. The measured results
are also averaged over microphone positions in the room.
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Figure 9: Damping loss factor of the plate
estimated by the structural reverberation
time test.
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Figure 10: Measured PSDs of the impact
force spectra for hammer excitations
on 11 rib positions and 10 inter-rib
positions. Each curve is averaged over the
microphone setups.
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Figure 11: Measured and computed normalized harmonic sound pressure levels in the
receiving room that are averaged over excitations at (a) 11 rib positions and (b) 10 inter-
rib positions of the plate. The results are computed for the experimental hammer impact
force. The measured results are also averaged over the microphone positions in the room.

Good correspondences of the magnitudes between the measured and computed
results are generally achieved. At low frequencies from 50 Hz to 200 Hz, the acoustic
response is dominated by the acoustic modes that are disregarded by the diffuse field



model. Therefore, the computed results only display structural resonances, while the
acoustic resonant peaks are absent. At frequencies above 200 Hz, the measured results
are well captured by the computed results, as the room is considered as a diffuse field,
which fulfills the SEA assumption. The minor discrepancies between the measured
and computed results can be attributed to the limited accuracies of the FE model, the
structural and acoustic damping, the measurement errors, etc.

5. NUMERICAL INVESTIGATION

This section investigates the influence of stiffeners to the impact sound radiation of the
plates at different frequency ranges. For this aim, the sound radiation efficiency, vibration
level, and impact sound radiation of the rib-stiffened plate are compared to the ones of the
plane PMMA plates with comparable bending stiffnesses.

First, in order to determine its equivalent bending stiffnesses in different directions, the
rib-stiffened plate was modeled as an orthotropic plane plate. This model was constructed
in ANSYS using SHELL181 element. The plate thickness was kept as 15 mm, such
that the equivalent density is ρp,eq = 1911 kg/m3. The major and minor Poisson’s ratios
were taken as νxy = 0 and νyx = 0, since the effect of the transverse contraction was
assumed to be negligible, respecting the shear stiffness [23, p.368-369]. The Young’s
moduli in the horizontal and vertical directions, and the shear modulus are Ex = 2.74 GPa,
Ey = 118.14 GPa, and Gxy = 1.76 GPa, which were using a similar model calibration
process as described in Section 3.1. The bending stiffnesses in the horizontal and vertical
directions, and the effective bending stiffness are then approximated by

Bx =
Ext3

p

12(1 − νxyνyx)
(13)

By =
Eyt3

p

12(1 − νyxνxy)
(14)

Beff =
√

BxBy. (15)

Next, two FE models were constructed in ANSYS for two plates with the same
isotropic properties, width and height as the base plate of the rib-stiffened plate. To
achieve the effective bending stiffness and the bending stiffness in the stiffened direction,
two plates have thicknesses of 32 mm and 60 mm, and their weights are 30% and 140%
higher than that of the rib-stiffened plate, respectively. The computed thin plate limit
frequencies [24, Equation 2.92] for these two plates are both lower than 2000 Hz,
therefore the two plates were modeled using 3D eight-node linear solid elements (of
the SOLID45 type). The boundary conditions of each plane plate were defined in the
same way as for the rib-stiffened plate, such that the bottom edge was clamped, and the
out-of-plane translations along the other three edges were restrained.

Figure 12 displays the sound radiation efficiencies, the velocity levels, and the
normalized harmonic sound pressure levels in the adjacent receiving rooms for the
rib-stiffened plate, the 32 mm-thick and 60 mm-thick plane plates, respectively. The
sound radiation efficiencies are computed using a modal summation approach [25]. The
velocity level is computed by

Lv = 10 log
〈v̂2〉S

v2
0

, (16)



where 〈v̂2〉S is the spatially averaged squared velocity, and v0 = 5 × 10−8 m/s is the
reference velocity specified in NBN EN ISO-1683 [26]. Both the velocity and sound
pressure levels are averaged over excitations on 11 rib positions and 10 inter-rib positions
for the rib-stiffened plate, respectively. For each of the plane plates, the results are
averaged over all 21 positions that were used for the rib-stiffened plate. The PSD of
the impact force at each impact position is 1 N2/Hz.
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Figure 12: (a) Sound radiation efficiencies, (b) velocity levels, and (c) normalized
harmonic sound pressure levels in the adjacent receiving rooms for the rib-stiffened plate,
the 32 mm-thick and 60 mm-thick plane plates, respectively. In (b) and (c), the results for
the rib-stiffened plate are averaged over 11 rib positions and 10 inter-rib positions, while
the results for each of the plane plates are averaged over all 21 positions. The PSD of the
impact force at each impact position is 1 N2/Hz.

The 60 mm-thick plate has the lowest critical frequency among the three plates, which
induces the highest radiation efficiency at a wide frequency range. However, as its velocity
level is considerably lower than the other two plates, the resulting sound pressure level is
also the lowest among the three plate.

At frequencies above 1600 Hz, the impedance of the rib-stiffened plate above the rib
positions is much higher than at the inter-rib positions. Therefore, for this frequency
range, the rib excitations induce much lower velocity levels and sound pressure levels
than the inter-rib excitations.

On the other hand, at frequencies below 550 Hz, the rib-stiffened plate behaves as
an orthotropic plate with an effective bending stiffness Beff; its radiation efficiency is
therefore very close to that of the 32 mm-thick plate. From 550 Hz on, the radiation
efficiency of the rib-stiffened plate displays several peaks, corresponding to the
coincidence frequencies at which that the bending wavelengths in the vertical direction of
the plate modes are equal to the acoustic wavelengths at specific propagating directions.
These peaks in the radiation efficiency result in higher sound pressure levels for the
rib-stiffened plate at these frequencies.

6. CONCLUSION

This work presents a numerical and experimental study on the impact sound radiation
by a rib-stiffened PMMA plate. The vibration of the plate and the resulting sound
radiation are deterministically computed by an FE model of the plate, and the sound
pressure level in the receiving room is computed by a diffuse room model. The
mechanical properties and the boundary conditions of the plate were determined
using the experimentally identified eigenmodes of the plate in different measurement
setups. The computed impact sound radiation due to hammer excitations on the plate is



experimentally validated. A numerical study shows that, at high frequencies, the driving
point impedance is much larger at the ribs than in between them. Therefore, the rib
excitations induce much lower structural vibration and impact sound radiation than the
inter-rib excitations. Moreover, the low frequency sound radiation efficiency, vibration
level and impact sound radiation of a rib-stiffened plate is comparable to an isotropic
plane plate with a higher weight and a similar effective bending stiffness.
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