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ABSTRACT

Railway rolling noise limits the use of higher speed trains near cities. Several
methods to address this problem can be found in the literature, such as the
modification of the wheel web geometry, or the use of perforations. In this work,
the authors propose the design of an acoustic optimized train fairing. This will
be obtained via a gradient-based Topology Optimization (TO) process, utilized to
minimize the mean acoustic pressure amplitude within a domain surrounding the
wheel.

In order to construct the acoustic optimized topology of the train fairing, a mixed
Finite Element (FE) formulation (displacement/pressure) is implemented. This
formulation is suitable to be used under the TO framework since it does not require
the explicit representation of the boundary of the structure in order to solve the
coupled vibro-acoustic problem. However, due to its high computational cost, the
authors propose the use of the mixed formulation combined with the Helmholtz
equation formulated in terms of pressure, in order to obtain an agile TO algorithm
in the framework of the fluid-structure coupled problems. This method is then
applied to the design of a bogie fairing, in order to minimize the acoustic pressure
amplitude within the target domain.
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1. INTRODUCTION

Density-based Topology Optimization (TO) [1] has been successfully applied to
elasticity design problems [2]. This method has proved to be an effective way to
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distribute material efficiently in order to obtain designs with reduced mass, while
minimizing an objective function, e.g. strain energy under a specific load case. The
TO methodology replaces the concept of shape by the density layout of the elements
contained in the design space x, which is to be optimized. Hence, not only the maximum
value (xe = 1 for hard material element), but also the intermediate values contribute with
fictitious mechanical properties.

However, for vibro-acoustics problems, the equation to solve is different for the
structure and air domains, and the exact location of the coupling boundary between them
is required. This makes the density-based approach unsuitable for this and other kinds of
multi-physics problems.

This difficulty can be overcome following several strategies. Some studies disregard
the effect of the acoustic perturbation on the structure; only the acoustic wave equation is
solved, hence decoupling the problem. In [3], a horn-lens configuration is optimized by
TO in order to minimize the amplitude of the reflected wave into the waveguide, whereas
in [4] the ceiling of a room is topologically optimized in order to reduce noise at a target
location. The elasticity of the structure is also not taken into account in [5], in order to
design a topologically optimized noise barrier placed between an emitter and a receiver
location where sound pressure is to be minimized.

Other studies focus on the TO of inner structural components of the design domain,
rather than modifying the coupling interface. Hence, the coupled system is solved. In [6],
an enclosure is stiffened by TO in order to reduce low frequency noise in the interior.
In [7] a bi-material surface is optimized in order to reduce the sound power radiated
under certain load cases, whereas in [8] the structure attached to the shell of a hearing
instrument is optimized topologically in order to minimize the sound pressure at certain
microphone locations.

If the air-structure interface is to be modified, the two phase material model has
to be used along with evolutionary algorithms. The level-set method [9] and the
bi-directional evolutionary structural optimization (BESO) [10] have been proved to be
good alternatives to optimize sound barriers while solving the acoustic field and the
linear elasticity of the structure. However, the solution reached by these methods often
depends on the initial guess design, which can be difficult to obtain in complex problems
involving multi-physics coupling.

Finally, a change in the formulation is proposed by some authors in order to solve
the coupled problem. In [11, 12], the displacement/pressure (u/p) mixed formulation [13]
is adopted to solve static and harmonic fluid-structure problems, and carry out the TO
of shells and sound barriers, respectively. Therefore, the authors of this work propose
to limit the use of this computationally-expensive formulation to a small region of the
domain (where the noise barrier is designed), whereas the rest of the acoustic domain is
solved using the standard pressure Helmholtz equation. As coupling conditions between
both subdomains, the kinematic compatibility and elastic equilibrium at the interface are
considered. The method is then applied to the design of a lower train fairing, and a
multi-objective function is constructed in order to minimize the sound pressure at a target
location, as well as the strain energy under a static load case.

2. THE FLUID-STRUCTURE PROBLEM

Figure 1 shows the problem set-up mentioned in Section 1. The domain is decomposed
into two subdomains: the acoustic domain Ωa, where the Helmholtz equation is solved



in terms of pressure, and the design domain Ωd where the u/p formulation is adopted. Γa
and Γd are the corresponding problem boundaries, whereas Γcoup is the coupling interface
between Ωa and Ωd. The area of design of the sound barrier is represented in Figure 1
in dark grey, whereas the area where sound amplitude is to be minimized, Ωi is coloured
in light grey. The wheel geometry [14] is denoted by Γrad, and excitation of the acoustic
field is carried out by means of a displacement input. Finally, Γabs is modelled as an
absorbent wall in order to avoid wave reflections.

Figure 1: Problem scheme.

The aim of this study is to carry out the TO of a thin wheel fairing, in order to minimize
the sound pressure amplitude integral within Ωi. Note that some elements within Ωd do
not participate in the TO process and their design variable is fixed xe = 0 (air) at all stages
of the optimization, as it will be explained in Section 2.4.

2.1. Material interpolation model

Gradient-based TO methods require a continuous and differentiable material model, so
that material properties range from those of the air (for elements with xe = 0) to those of
the solid structure (for elements with xe = 1).

As suggested by Yoon et al. [12], both air and solid vibro-acoustic properties can be
described using the bulk and shear moduli, denoted by K and G respectively, and density
ρ. For the solid material, Ks and Gs are related to the Young’s modulus E and Poisson
ratio ν. For the two-dimensional plane strain case [12]:

Ks =
E

2(1 + ν)(1 − 2ν)
, (1)

Gs =
E

2(1 + ν)
, (2)

while air has a bulk modulus related to its density and speed of sound ca, and null shear
modulus [12]:

Ka = ρac2
a , (3)

Ga = 0 . (4)



The rational approximation of material properties (RAMP) [12] is used in this work
to interpolate the material properties from those of the air to those of the solid, while
penalizing intermediate values of xe. This can be stated as [12]:

K(xe) = Ks
xe

1 + (1 − xe)n
+ Ka

(
1 −

xe

1 + (1 − xe)n

)
, (5)

G(xe) = Gs
xe

1 + (1 − xe)n
, (6)

ρ(xe) = ρsxe + ρa(1 − xe) . (7)

2.2. The mixed formulation

As mentioned in Section 1, the u/p mixed formulation [13] allows to solve the
vibro-acoustic problem without the need to define the coupling interface. Next, the
governing equations for Ωd are recalled. By applying the Newton’s second law to a
control volume in any continuum, and neglecting the body force term, the following
expression is obtained [13]:

∇ · σ̂ = ρ
∂2û
∂t2

, (8)

σ̂ and û being the stress tensor and the displacement vector. By assuming a time-harmonic
solution of the stress and displacement fields, with angular frequency ω so that σ̂ = σe jωt

and û = ue jωt, the following expression is obtained [12]:

∇ · σ = −ω2ρu . (9)

The stress tensor can be decomposed into its volumetric and deviatoric components:

σ = Kεvδ + 2Ge , (10)

εv and e being the volumetric and deviatoric strains, and δ being the Kronecker’s delta.
The bulk modulus K and shear modulus G will be used in this article to characterize both
the air and structure [12]. The volumetric strain is defined as:

εv =
∆V
V

= εxx + εyy = mT ε , (11)

where the strain tensor is ε =
{
εxx, εyy, εxy

}T
, and m =

{
1, 1, 0

}T
. As an alternative to the

pure displacement formulation, one may include the pressure p as a variable [13]:

p = −Kεv = −K∇ · u , (12)

whereas the deviatoric strain in 2D can be calculated as:

e = ε −
εv

2
= Dd ε , (13)

where Dd = I0 − 1/2 mT m, and I0 is the diagonal matrix. The weak form of Equations
9 and 10 can be stated as:∫

Ωd

δεT 2Ge dΩ −
∫

Ωd

δεT (pδ) dΩ −ω2
∫

Ωd

δuT u dΩ −
∫

Γd

δuT (σnu) dΩ = 0 ,

(14)



nu being the outward unit vector normal to the boundary. Taking into account Equations
11 and 13, it yields:∫

Ωd

δεT 2GDdε dΩ −
∫

Ωd

δεT mp dΩ −ω2
∫

Ωd

δuT u dΩ −
∫

Γd

δuT (σnu) dΩ = 0 .

(15)
Additionally, the weak form of Equation 12 is:∫

Ωd

δp
(
p/K + mT ε

)
dΩ = 0 . (16)

The FEM is applied to Equations 15 and 16, and in order to fulfill the Inf-Sup condition
[13], the domain is meshed with quadrilateral elements using second and first order nodal
shape functions Nu and Np for displacements and pressure, respectively.

The following system of equations (expressed here in compact form) is obtained [2,
12, 13]: [

Kuu −ω
2Muu Cup

CT
up Dpp

] [
Ũ
P̃

]
=

[
Fu
0

]
, (17)

where Ũ and P̃ are the nodal values of displacements and pressure. For the full derivation
of the mixed formulation, the reader is referred to references [11–13]. The expressions of
the global matrices contained in Equation 17 are:

Kuu =
Nd∑

e=1

2Ge

∫
Ωe

BT
u DdBu dΩ , (18)

Muu =
Nd∑

e=1

ρe

∫
Ωe

NT
u Nu dΩ , (19)

Cup =
Nd∑

e=1

−

∫
Ωe

BT
u mNp dΩ , (20)

Dpp =
Nd∑

e=1

−
1

Ke

∫
Ωe

NT
p Np dΩ , (21)

Fu =
Nd∑

e=1

∫
Γe∩Γd

NT
u (σnu) dΓ , (22)

where Bu is the usual strain-displacement matrix, and Nd is the number of elements in the
design space.

2.3. Helmholtz equation

The sound propagation in the homogeneous medium corresponding to Ωa can be
described by the following version of the Helmholtz equation:

∇2 p +
ω2

c2
a

p = 0 , (23)

where ca is the speed of sound. The FEM is applied in an analogous way to Section 2.2,
obtaining [15]: (

Ka −ω
2Ma

)
P̃a = Fa , (24)



P̃a being the pressure value at the nodes of Ωa. The stiffness, mass and force terms are:

Ka =
Na∑

e=1

∫
Ωe

BT
p Bp dΩ , (25)

Ma =
1
c2

a

Na∑
e=1

∫
Ωe

NT
p Np dΩ , (26)

Fa =
Na∑

e=1

∫
Γe∩Γa

NT
p
∂p
∂np

dΓ , (27)

where Nd is the number of elements out of the design domain, np is the outward unit
vector normal to the boundary, and Bp = ∇Np.

2.4. Subdomain coupling

The Helmholtz equation can be derived from the u/p formulation when the air
properties are assigned (Ga = 0, Ka = ρac2

a) to the governing and the constitutive
equations. Equations 9 and 12 can be simplified as follows [12]:

∇p −ω2ρau = 0 , (28)

∇ · u +
p

ρac2
a
= 0 . (29)

Equations 28 and 29 correspond to the linearized Euler equation and the linear
continuity equation, and by solving for u in Equation 28 and substituting it in Equation
29, one obtains the linear wave equation [12]. The former is used to ensure the kinematic
compatibility between Ωd and Ωa. As it can be seen in Figure 1, some air elements
are inserted between the wheel fairing and the coupling interface, in order not to catch
possible numerical instabilities in the displacement field when large changes in material
properties exist. Therefore the coupling boundary Γcoup is placed in the air region, where
both formulation are valid, thus easing the coupling process.

By evaluating the pressure gradient normal to the boundary Γcoup in Equation 27, one
obtains:

∂p
∂np

= np
T∇p = nT

p

(
ω2ρau

)
, (30)

and Fa results in:

Fcoup
a =

Ncoup∑
e=1

∫
Γe∩Γcoup

NT
p nT

p

(
ω2ρau

)
dΓ = ω2ρa

Ncoup∑
e=1

∫
Γe∩Γcoup

NT
p

(
nT

p Nu
)

dΓ Ũ .

(31)
This term is then moved to the left-hand side of Equation 24 to create an additional

mass term following the relation ω2Mcoup
ad = Fcoup

a , obtaining:

Mcoup
ad = ρa

Ncoup∑
e=1

∫
Γe∩Γcoup

NT
p

(
nT

p Nu
)

dΓ . (32)

On the other hand, the elastic equilibrium σnu = −pnu at Γcoup is introduced into
Equation 22 to obtain:

Fa =
Nd∑

e=1

∫
Γe∩Γcoup

NT
u nu (−Np) dΓ P̃a . (33)



Further manipulation leads to a new stiffness term in Equation 17:

Kcoup
da =

Ncoup∑
e=1

∫
Γe∩Γcoup

NT
u nuNp dΓ . (34)

The global system of equations obtained is:
Kuu −ω

2Muu Cup Kcoup
da

CT
up Dpp 0

−ω2Mcoup
ad 0 Ka −ω

2Ma


Ũd
P̃d
P̃a

 =
Fu

0
Fa

 (35)

3. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

As explained in Section 1, three objective functions fk (k = 1, 2, 3) are treated in this
paper. First, the vibro-acoustic analysis is considered and the integral of the acoustic
pressure amplitude within Ωi is to be minimized. Given a design point x, this pressure
integral f1(x) can be evaluated at a specific frequency or along a target frequency range
[ω0,ω1], in which case the mean value of f1(x) is calculated by means of a numerical
integration quadrature. Second, the strain energy f2(x) of the structure when certain
load cases are considered is also minimized in order to guarantee structural continuity.
Finally, an additional penalty function is considered in order to force convergence of the
n design variables xe to either 0 (air) or 1 (solid). A polynomial function is defined, with
f3(xe) = −4x2

e + 4xe, so that f3(xe) is maximum for intermediate values of xe, and is
zero for xe = 0 and xe = 1.

A linear scalarization of the aforementioned objective functions is considered in the
present study. The resulting minimization problem, using the single-objective function
f0(x) is:

min
x

f0(x) =
3∑

k=1

wk fk(x) = w1

∫ ω1

ω0

(∫
Ωi

∣∣∣p(x)∣∣∣ dΩ
)

dω

ω1 −ω0
+ w2 f2(x) + w3

n∑
e=1

f3(xe) ,

(36)

subject to 0 ≤ xe ≤ 1 for e = 1, ..., n . (37)

Additionally, a number m of constraints gi(x) can be added in order to narrow the
design space, such as the weight constraint, g1(x) = W(x) −W0 ≤ 0, where W0 is the
desired weight and W(x) is the weight of the structure at each iteration point:

gi(x) ≤ 0 for i = 1, ..., m . (38)

The optimization problem is solved by the use of the iterative gradient-based
Method of Moving Asymptotes (MMA) [16]. Given a design point x, an approximation
subproblem is generated, in which the objective function is replaced by the sum of several
convex functions which are constructed using gradient information. The resolution of
this subproblem is beyond the scope of this paper and the reader is referred to [16] for its
description. The computation of the sensitivities of f0 with respect to the design variables
can be sped up (with respect to the finite difference method) by using the standard adjoint
method [17], which is recalled in Section 4.



4. SENSITIVITY ANALYSIS

The standard adjoint method [17] is described below. Equation 35 is recalled here in
compact form:

K(x,ω)Θ̃(x,ω) = F(x,ω) , (39)

where the column vector Θ̃ contains the displacement and pressure nodal values. At each
iteration, for a certain frequency ω, the augmented objective function is defined as:

f̂0
(
Θ̃(x)

)
= f0

(
Θ̃(x)

)
− λT (x)

(
K(x)Θ̃(x) − F(x)

)
− λ

T
(x)

(
K(x)Θ̃(x) − F(x)

)
,

(40)
λ(x) being the Lagrange multipliers column vector, and (·) being the complex conjugate
of (·). Differentiating previous expression with respect to the design variable xe leads to:

∂ f̂0
∂xe

=

(
∂ f0
∂Θ̃r

)T
∂Θ̃r

∂xe
+

(
∂ f0
∂Θ̃i

)T
∂Θ̃i

∂xe

− λT
(
∂K
∂xe

Θ̃ + K
(
∂Θ̃r

∂xe
+ j

∂Θ̃i

∂xe

)
−
∂F
∂xe

)
− λ

T
∂K
∂xe

Θ̃ + K
(
∂Θ̃r

∂xe
− j

∂Θ̃i

∂xe

)
−
∂F
∂xe

 , (41)

where the term
∂K
∂xe

is derived analytically in order to save computation time. Column

vectors
∂ f0
∂Θ̃r

and
∂ f0
∂Θ̃i

contain the derivatives of f0 with respect to the real and imaginary

parts of the nodal solution associated with the elements within Ωi. Reordering the terms,
the following expression is obtained:

∂ f̂0
∂xe

=

(
∂Θ̃r

∂xe

)T (
−KT λ −KT λ +

∂ f0
∂Θ̃r

)
+

(
∂Θ̃i

∂xe

)T (
− jKT λ + jKT λ

∂ f0
∂Θ̃i

)
− λT

(
∂K
∂xe

Θ̃ −
∂F
∂xe

)
− λ

T
∂K
∂xe

Θ̃ −
∂F
∂xe

 . (42)

As the explicit form of the terms
∂Θ̃r

∂xe
and

∂Θ̃i

∂xe
is difficult to obtain, λ(x) is chosen so

that:

−KT λ −KT λ +
∂ f0
∂Θ̃r

= 0 , (43)

− jKT λ + jKT λ +
∂ f0
∂Θ̃i

= 0 . (44)

Multiplying Eq. 44 by − j and adding Eq. 43 leads to [17]:

λ =
1
2

(
KT (x)

)−1
(
∂ f0
∂Θ̃r

− j
∂ f0
∂Θ̃i

)
. (45)



Finally, the sensitivity of the objective function with respect to each design variable xe
is calculated as [17]:

∂ f̂0
∂xe

= −2<
{

λT
(
∂K
∂xe

Θ̃ −
∂F
∂xe

)}
for e = 1, ..., n , (46)

where<
{
(·)} is the real part of the complex (·).

5. EXAMPLE OF BOGIE FAIRING TOPOLOGY OPTIMIZATION FOR
ROLLING NOISE MINIMIZATION AT A GIVEN FREQUENCY

In this section, a fairing is optimized in order to minimize the rolling noise perceived
in the surroundings. The case study is modelled in 2D for the validation of the
aforementioned optimization method. The frequency of study is set to 800 Hz. Neumann
boundary conditions are applied at Γrad in order to model the wheel vibration by means of
an input displacement normal to the boundary. The absorbing boundary Γabs is modelled
by applying the Sommerfeld condition n · ∇p + ikp = 0 [12], evaluated in Equation 27.

All design variables xe are initially set to 0.5, as seen in Figure 2a. The objective
function coefficients are w1 = 1, w2 = 0.1 and w3 = 0.3. For the present analysis,
ca = 340 m/s, ρa = 1.225 kg/m2, E = 3.5 GPa, ν = 0.34 and ρs = 1320 kg/m2.
The pressure integral whithin the receiver area is f (0)1 = 7.4351 N, whereas the initial

compliance of the structure under the aforementioned load case is f (0)2 = 9.3287 mJ.
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Figure 2: Initial problem

A traction pressure in the lower surface is considered in this case study. As it can be
seen in Figure 3a, the optimized topology after 46 iterations includes several voids within
the structure. The resulting acoustic pressure field is shown in Figure 3b. Significant noise
reduction in the surroundings is observed. The pressure amplitude integral decreases to
f (73)
1 = 5.7696 N. The strain energy slightly decreased to f (73)

2 = 9.1949 mJ, due to the
lower weighing coefficient of this objective function, w2 << w1. Additionally, the weight
constraint is fulfilled.
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Figure 3: Final problem

Next, the difference in wave pressure amplitude,
∣∣∣p(46)

∣∣∣ − ∣∣∣p(0)∣∣∣ is shown within Ωi. A
mean decrease of about 1.6 Pa is observed for the final design with respect to the initial
one within the target area.

Figure 4: Diference in acoustic pressure absolute value,
∣∣∣p(46)

∣∣∣ − ∣∣∣p(0)∣∣∣
6. CONCLUSIONS

A TO scheme with reduced computational cost for the coupled vibro-acoustic problem
has been set up through the use of the domain decomposition technique, by implementing
the mixed u/p formulation in a small region of the problem domain, while solving the
Helmholtz equation in the rest of the air region. The optimization problem is solved by
the iterative gradient-based solver MMA.

The use of the adjoint method, along with the analytical derivation of the global
matrices with respect to each design variable, allows to efficiently calculate the
sensitivities of the objective function.

The results show a considerable improvement in the acoustic performance of the
optimized wheel fairing with respect to the initial topology. The additional consideration
of the compliance minimization problem under a static load case makes the design
achieved to be structurally continuous.



Future works will focus on the consideration of variable-dependant volumetric forces
in the static analysis and the design of sound barriers under maximum admissible elastic
stress restrictions.
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