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ABSTRACT 

Source identification in a complex environment has a remarkable interest in 

acoustic and noise-engineering as well as in defence applications. The detection of 

mobile sources through a swarm of drones used as a set of microphones carriers is 

proposed in the present paper formulating a new theory to solve the problem. A set 

of N carriers of sensors, each of them equipped by its own dynamics, moves in the 

environment and can detect the local acoustic field as an effect of the noise emission 

of unknown mobile sound-sources. Sound received from the microphones on the 

carriers is the only detectable signal in the field and the only trace the noise-target 

releases into the environment. The CAI (Centralized Artificial Intelligence) can use 

the information coming from the microphones to localize in the best way the source. 

The swarm pattern noise-source searching is piloted by the CAI that controls the 

swarm operation and suggests the best re-localization of the agents and thus of the 

microphones at each time step, with the aim of localizing and trapping the noise-

source in an optimal fashion. The mission is completed when the drones localize and 

reach the noise target. 
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1. INTRODUCTION 

In many recent applications it is of great importance the ability of identification 

of some environment characteristics. Examples are found in acoustics, elastic structures 

or environmental pollution.  

A moving acoustic source injects into the air or water wave energy that propagates and 

can be detected by suitable sensors (microphones or hydrophones).  For example, starting 

from the signals perceived by the microphones, one can be interested in the reconstruction 

of the acoustic field [1-3]. On this basis it is possible to make a preventive identification 

of the source useful in many engineering applications such as damage identification [4], 

mechanical structures prevention subjected to unscheduled wear due to stick-and-slip 

contact phenomena [5] or general machinery malfunctions. Analogously, a source of 

pollutant can generate, by diffusion, a field of concentration in the air environment. 

Pollutant sensors can detect the characteristics of concentration and possibly can predict 

position and emission rate of the source. 
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The present is a problem of identification, with the peculiarity that the sensors can be 

displaced into the field and their motion can be suitably used to enhance the detection of  

its characteristics. Moreover, as it happens in real problem, the sensors cannot be 

instantaneously moved at given desired placements, rather their repositioning is subjected 

to the dynamics of the carriers where they are mounted on board. The system artificial 

intelligence can only act on suitable commands and actuators to drive the sensors 

positioning, but always subjected to the carries dynamics [6-7]. The dynamics of the 

problem is rather complex in that its state dynamics involves the carrier dynamics, the 

acoustic field propagation, the sensors acquisition, and for each elements of the chain, 

polluting noise is present.     

 

2. SWARM IDENTIFICATION AND TRAPPING: PROBLEM STATEMENT 

The statement of the problem we desire to attack here is formulated as follow. 

A set of moving sensors {𝑠1, 𝑠2, … , 𝑠𝑁} can explore a space region R within which a scalar 

field Φ(𝜉, 𝑡) exists. Each of the sensors is installed on board of the i-th carrier and moves 

autonomously with an associated state variable 𝑥𝑖. The dynamics of the single carrier is 

in the form: 

�̇�𝑖 = 𝑓𝑖(𝑥𝑖, 𝑢𝑖)     (1) 

The set of the carriers obeys the differential equations: 

�̇� = 𝑓(𝑥, 𝑢) + 𝑛𝑥    (2) 

where 𝑓 represents the characteristic dynamics of the swarm, 𝑥𝑇 = [𝑥1, 𝑥2, … , 𝑥𝑁], 𝑓
𝑇 =

[𝑓1, 𝑓2, … , 𝑓𝑁] ,   and 𝑛𝑥 is the residual unmoddelled part of the carriers dynamics, and 

finally 𝑢𝑇 = [𝑢1, 𝑢2, … , 𝑢𝑁] is the vector collecting their controls. 

The on board sensors of the carriers detect signals in R of points 𝜉, produced by the 

presence of the field Φ(𝜉, 𝑡). The signal generated by the i-th sensor is a scalar 𝑠𝑖 related 

to the field Φ by the relationship: 

𝑠𝑖(𝑡) = 𝑔𝑖  Φ(𝑥𝑖 , 𝑡) + 𝑛𝑠𝑖    (3) 

where the field Φ is evaluated at the point 𝜉𝑖 , part of the state vector 𝑥𝑖 of the carrier 

(𝑥𝑖 = [𝜉𝑖, 𝑣𝑖], where 𝑣𝑖 is the velocity of the i-th carrier). 

The identification of the observed field through the sensors set {𝑆1, 𝑆2, … , 𝑆𝑁} is much 

more effective if a model of the field Φ is available. 

For example, for an acoustic source moving in R, suppose Φ is the acoustic pressure, then 

we know the field obeys the equation; 

∇2Φ−
1

𝑐2
𝜕2Φ

𝜕𝑡2
= 𝑄(𝑡)𝛿 [𝜉 − 𝜉𝑄(𝑡)]    (4) 

where the entire field is originated by the two functions of the time 𝑄(𝑡) and 𝜉𝑄(𝑡), i.e. 

from the intensity and the location of the source, respectively. Therefore, the statement 

of the problem can be set as follows: 



 

Statement: a swarm of N carriers is given, described each by the state variable 𝑥𝑖, each 

carrying one sensor 𝑆𝑖 generating the signal 𝑠𝑖(𝑡) due to the field 𝛷 (𝜉, 𝑡). The field 𝛷 

obeys a known partial differential equation 𝐷𝜉,𝑡(𝛷) = 0, where 𝐷𝜉,𝑡 is a differential 

operator with respect both to the space and the time variables, respectively. 𝑢 represents 

the control of the swarm. The set of equations is given: 

{
 

 
�̇� = 𝑓(𝑥, 𝑢, 𝑡) + 𝑛𝑥

𝐷𝜉,𝑡(Φ) = 𝑄(𝑡)𝛿 [𝜉 − 𝜉𝑄(𝑡)] + 𝑛Φ

𝑠𝑖(𝑡) = 𝑔𝑖  Φ(𝑥𝑖, 𝑡) + 𝑛𝑠𝑖 𝑖 = 1,2,… ,𝑁

   (5) 

Goal:  identify, in the most efficient way, in some sense to be specified later, 𝑄(𝑡) and 

𝜉𝑄(𝑡), provided we can act on the control 𝑢 and that the signals 𝑠𝑖 are acquired. 

The request to reach a source is formulated using the optimal control theory by the 

minimization or maximization of a given cost functions 𝐽: 

𝐽 = 𝑚𝑖𝑛
𝑢∈𝑈

𝑥∈𝑋

∫ 𝐸(𝑥, 𝑢)𝑑𝑡
𝑇

0
     (6) 

The objective function 𝐸(𝑥, 𝑢) can indicates, for example, the distance or intensity of any 

source that must be reached by the carrier, satisfying state and control constraints 𝑥 ∈

𝑋 , 𝑢 ∈ 𝑈 respectively. The problem (Equation 6) is solved introducing the dynamic 

system constraints (5) through lagrangian multipliers and often a direct feedback control 

solution is obtained by using variational feedback control (VFC) tecniques [8,9]. 

To simplify the problem assume a linear dynamics for the swarm of sensor carriers, and 

consider the case Φ ≡ 𝑝 as an acoustic field described by the linear wave equation: 

  

{

�̇� = 𝐴 𝑥 + 𝐵 𝑢 + 𝑛𝑥

𝑠𝑖 = 𝑔𝑖𝑝(𝑥𝑖, 𝑡) + 𝑛𝑠𝑖

𝛻2𝑝 (𝜉, 𝑡) −
1

𝑐2
�̈� (𝜉, 𝑡) = 𝑄(𝑡)𝛿 [𝜉 − 𝜉𝑄(𝑡)] + 𝑛𝑝

  (7) 

The problem with respect to the classical approach to the Kalman filter is remarkably 

different. In fact, in those classical problems 𝑠𝑖 is proportional to 𝑥 and the objective of 

the estimate is 𝑥 and not the measured field 𝑝. Moreover, the optimal control problem 

through 𝑢 is not that of requiring an optimal performance for 𝑥, but for 𝑠𝑖. Moreover, as 

it appears in this case we need two models for the 𝑥 and 𝑝 dynamics, respectively. 

 

3.  REDUTION TO A KALMAN’S FILTER PROCESS 

 Let us to expand the 2D pressure field as: 

𝑝 (𝜉, 𝑡) = 𝑃𝑗𝑘 (𝜉)𝑞𝑗𝑘(𝑡)     (8) 



where Einstein’s notation for summation is used, and the projection functions 𝑃𝑗𝑘 (𝜉) are 

known:  

𝑃𝑗𝑘 (𝜉) = 𝐶𝑗𝑘 sin (
𝑗𝜋𝑥

𝑙𝑥
) sin (

𝑘𝜋𝑦

𝑙𝑦
)   (9) 

The wave equation becomes: 

∇2𝑃𝑗𝑘𝑞𝑗𝑘 −
1

𝑐2
𝑃𝑗𝑘�̈�𝑗𝑘 = 𝑄𝛿 (𝜉 − 𝜉𝑄) + 𝑛𝑝  (10) 

Assuming the set 𝑃𝑗𝑘 is orthonormal, decoupled equations in terms of the principal 

coordinates are: 

�̈�𝑗𝑘 +𝜔𝑗𝑘
2 𝑞𝑗𝑘 = 𝑄𝑃𝑗𝑘 (𝜉𝑄) + ∫ 𝑃𝑗𝑘𝑅

𝑛𝑝𝑑𝜉  (11) 

i.e. 

�̈� + 𝜆𝑞 = 𝑄𝑃 (𝜉𝑄) + 𝑛𝑝   (12) 

For the sensors equation, we have: 

𝑠𝑖 = 𝑔𝑖𝑃𝑗𝑘 (𝑥𝑖) 𝑞𝑗𝑘(𝑡) + 𝑛𝑠𝑖    (13) 

In matrix form this equation is written as: 

𝑠 = �̃�(𝑥)𝑞 + 𝑛𝑠    (14) 

In general, the dimensions of 𝑠 are much smaller than those of 𝑞 (in fact the acoustic field 

can ideally contain an infinite number of modes, the sensors number remaining indeed 

finite) and the matrix: 

�̃� =

[
 
 
 
 
 
𝑔1𝑃

𝑇(𝑥1)

𝑔2𝑃
𝑇(𝑥2)

⋮
⋮

𝑔𝑁𝑃
𝑇(𝑥𝑁)]

 
 
 
 
 

    (15) 

is rectangular, with the number of rows much smaller than the number of coloumns.   

Therefore, we can rewrite the equations of the problem as: 

{

�̇� = 𝐴 𝑥 + 𝐵 𝑢 + 𝑛𝑥

�̈� + 𝜆𝑞 = Ψ + 𝑛𝑝

𝑠 = �̃�(𝑥)𝑞 + 𝑛𝑠

             (16) 

where Ψ = 𝑄𝑃 (𝜉𝑄) is the vector with the unknowns variables, 𝑄,  𝜉𝑥𝑄 ,  𝜉𝑦𝑄 . 

Let us reduce to a first order problem introducing �̇� = 𝑦: 



{
 
 

 
 
�̇� = 𝐴 𝑥 + 𝐵 𝑢 + 𝑛𝑥

�̇� = −𝜆𝑞 + 𝛹 + 𝑛𝑝

�̇� = 𝑦

𝑠 = �̃�(𝑥)𝑞 + 𝑛𝑠

    (17) 

 

The modelling can be reduced to an assembly that includes (i) the carriers dynamics, (ii) 

the acoustic field model, and (iii) the auxiliary equations. They produce together a unique 

model of the system, including the carreiers and the environment they explore. The fourth 

equation is the sensor model. Proceding as for Kalman’s filter approach, let us write the 

assembly of the first three theroretical models: 

𝑟𝑇 = [𝑥, 𝑦, 𝑞]
𝑇
     (18) 

 

�̇� = [

𝐴 0 0

0 0 −𝜆

0 𝐼 0

] 𝑟 + 𝐵′𝑢 + 𝛹′ + 𝑛′ = 𝐴′ 𝑟 + 𝐵′𝑢 + 𝛹′ + 𝑛′ (19) 

where prime denote augmented matrices. The problem statement becomes: 

{
�̇� = 𝐴′ 𝑟 + 𝐵′𝑢 + 𝛹′ + 𝑛′

𝑠 = �̃�(𝑟)𝑟 + 𝑛𝑠
    (20) 

This statement exhibits the form of an optimal observation problem. This includes a 

nonlinearity into the sensors dynamics and the presence of a statistical-deterministic 

disturbance 𝛹′ + 𝑛′ in the carriers model. However, both of these difficulties can be 

approached with an extended Kalman filter [10-13], and by the deterministic approach to 

Kalman filtering. Once the optimal observer �̂� is determined, the otpimal observer �̂� of 

the pressure field principal components can be extracted, and the scalar pressure 

�̂� (�̂�𝑖, 𝑡) = 𝑃𝑗𝑘 (�̂�𝑖) �̂�𝑗𝑘(𝑡) at the optimally estimated positioning �̂�𝑖 is finally determined. 

The optimal control problem can be approached in the context of LQG that permits to 

drive the swarm in a way to optimize the acoustic field identification. 

The problem of the identification of the source term 𝛹′ , that icludes the acoustic intensity 

and the source location, and its possible tracking proceeds in a separated fashion and uses 

in principle the equation �̈̂� + 𝜆�̂� = Ψ or even properties derived directly from the original 

wave equation ∇2Φ−
1

𝑐2
𝜕2Φ

𝜕𝑡2
= 𝑄(𝑡)𝛿 [𝜉 − 𝜉𝑄(𝑡)], as it is illustrated in the next section. 

 

4.  THE THREE MODULES OF THE CAI OF THE SWARM  

The strategy for the source tracking and the definition of the objective function to 

state an optimal control problem, are still based on the set of the previous investigated 

equations. The previous paragraph shows the swarm formulation problem  is based on the 

swarm dyanmics, the acoustic dynamics, and the sensor equations.  



In general, the CAI we are programming is based on a three-steps strategy. The first has 

been described in the previous section and is based on the Reduction to a Kalman 

Filtering, named RKF. The aim of this phase is that of filtering the background noise 

effects, both for acoustic extra-soruces present into the environment besides the acoustic 

target, as well as for the control problem. As a result, the motion of the swarm is piloted 

in order to percieve as cleaner as possible the acoustic field, driving the drones in the best 

acousting listening regions. The availability of the optimal observers for the acoustics 

pressure and for the carriers states, permits to use the acosutic signalling from the source 

in an optimal fashion. To this observation it is related the second step of the strategy of 

the CAI of the swarm, named IOS- identification of the source. A system based on the 

TOA-time of arrival of the acoustic signals, directly related to the acoustic modelling of 

the environment, can be triangulated to identify the source position 𝜉𝑄(𝑡). Once 𝜉𝑄(𝑡), a 

further guidance process to source track can be activated, the third-step of the CAI, named 

ST-Source Tracking. In this phase the system defines an objective function based on the 

goal of attacking the source. In this context it is assumed the best strategy of control is 

that to point the source diminishing the distance from the sensors, hoping this leads to 

better signal to noise ratio. The IOS process is always active, since it does not imply any 

control action, but it consists of data analysis. Switching between the RKF and ST is 

indeed managed by a supervisor on the basis of extra-information provided by the system 

of sensors. In fact, the two methods cannot be used simulatenously because they imply 

different controls. An alternating automatic switching between the two is possible, but 

some indicatiors can be used to promote the switching in an optimal manner. In fact, both 

the methods have internal errors as a reference of the quality of the identification they are 

promoting. The RKF can at any time compare the sensor measurements and the optimal 

observers to built up a KPI of the quality of signals on board. The same is true also for 

the ST, since the triangulations can give an estimate with error of the position of the 

source. Comparative analysis of the errors can switch between the two guidance systems.    

The ST-Source Tracking is aimed at minimizing: 

min
𝑢∈𝑈

𝑥∈𝑋

∫ ∑ (𝑥𝑖 − 𝜉𝑄)
𝑇
(𝑥𝑖 − 𝜉𝑄) 𝑑𝑡

𝑁
𝑖=1

𝑇

0
   (21) 

that implies the following objective function is selected:  

min
𝑢∈𝑈

𝑥∈𝑋

1

2
∫ (∑ (𝑥𝑖 − 𝜉𝑄)

𝑇

(𝑥𝑖 − 𝜉𝑄) + 𝑢
𝑇𝑅 𝑢 + 𝜆𝑇 (�̇� − 𝐴 𝑥 − 𝐵 𝑢)𝑁

𝑖=1 ) 𝑑𝑡
𝑇

0
 (22) 

 

In this context, based on some data provided by the RKF module, we solve a standard 

LQR problem leads to 𝑢 = 𝐾 𝑥, updating 𝜉𝑄 through the IOS module or by solving �̈̂� +

𝜆�̂� = Ψ. As a result we track the field source and the swarm follows the identified source 

at the end locking it.  

 
5.  THE ACOSUTIC FIELD AND THE CARRIERS MODELLING 

 Let’s consider the 2D-wave equation, which describes the propagation of the 

acoustic pressure field p over the region R: 

∇2𝑝(𝑥, 𝑦) −
1

𝑐2
𝜕2𝑝(𝑥,𝑦)

𝜕𝑡2
= 𝑄(𝑡)𝛿 [𝜉(𝑡) − 𝜉𝑄]   (23) 



𝑝(𝑥, 𝑦) is the acoustic pressure field along the 𝑥 and 𝑦 directions at the time 𝑡 and 𝑐 is the 

speed of sound. At the boundaries Mur’s absorbing conditions are applied to avoid 

reflections and echo phenomena, to minimize the disturbances on the measurements: 

{

𝜕𝑝

𝜕𝑥
|
𝑥=0

= 𝑐
𝜕𝑝

𝜕𝑡
|
𝑥=0

,
𝜕𝑝

𝜕𝑥
|
𝑥=𝐿𝑥

= −𝑐
𝜕𝑝

𝜕𝑡
|
𝑥=𝐿𝑥

𝜕𝑝

𝜕𝑦
|
𝑦=0

= 𝑐
𝜕𝑝

𝜕𝑡
|
𝑦=0

   ,
𝜕𝑝

𝜕𝑦
|
𝑦=𝐿𝑦

= −𝑐
𝜕𝑝

𝜕𝑡
|
𝑦=𝐿𝑦

  
     (24)  

The modeled source is supposed to be harmonic 𝑄(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡), with angular 

frequency 𝜔 = 4.71 𝑟𝑎𝑑/𝑠 , located at the point of coordinates 𝜉𝑄 = (6.96, ; 0.90). 

The wave model is dervied by using a finite difference method in space and time: 

𝑝𝑖,𝑗
𝑡+1 = 2𝑝𝑖,𝑗

𝑡 − 𝑝𝑖,𝑗
𝑡−1 + 𝐶2(𝑝𝑖+1,𝑗

𝑡 + 𝑝𝑖−1,𝑗
𝑡 − 4𝑝𝑖,𝑗

𝑡 + 𝑝𝑖,𝑗+1
𝑡 + 𝑝𝑖,𝑗−1

𝑡 ) + Δ𝑡2𝑄𝑖,𝑗
𝑡    (25) 

the indexes 𝑖 and 𝑗 refer to the 𝑥 and 𝑦 axes, respectively. 𝐶 = 𝑐
 Δ𝑡

Δ𝑥
 , is the Courant-

Friedrichs-Lewy condition coefficient, which for the present case has been chosen equal 

to 0.15. In Figure (1) it is reported a shot of the generated field within the region R.  

 

Figure 1 - Acoustic Pressure Field propagating in the region R. Mur’s Boundary condition are applied. 

Dynamic equations of carriers have been represented through a moving mass system 

subjected to external forces on xy-plane: 

𝑚�̇�𝑥 = 𝐹𝑥
𝑚�̇�𝑦 = 𝐹𝑦

     (26) 

The state space representation for a single carrier can be expressed as follows: 

{
 
 

 
 𝜉�̇�
𝜉�̇�
�̇�𝑥
�̇�𝑦}
 
 

 
 

= [

1 0
0 1

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

]

−1

[

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

]{

𝜉𝑥
𝜉𝑦
𝑣𝑥
𝑣𝑦

} + [

1 0
0 1

0 0
0 0

0 0
0 0

𝑚 0
0 𝑚

]

−1

[

0 0
0 0
1 0
0 1

] {
𝑢𝑥
𝑢𝑦
}   (27) 



where 𝜉 = (𝜉𝑥, 𝜉𝑦) and 𝑣 = (𝑣𝑥, 𝑣𝑦) are the position and the velocity of the single carrier, 

respectively, 𝑚 is the mass of the single carrier and 𝑢 = {
𝑢𝑥
𝑢𝑦
} is the vector of the control. 

The swarm dynamics can be easily synthesized in the canonical linear time invariant 

system: 

�̇� = 𝐴𝑥 + 𝐵𝑢     (28) 

 

6.  SOURCE IDENTIFICATION 

 At every time step, the state vector of the swarm of sensors is considered acquired, 

i.e. positions and velocities are given through a GPS system, and it is possible to localize 

the source using only measurements through the TOA technique. 

This uses the absolute time of arrival of a signal to a certain carrier, departing from a 

second unknown point (the field source). The distance between the observer and the 

source can be estimated by the TOA. Known the speed of sound c, the distance is: 

𝑟 = 𝑐 ∗ 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙     (29) 

from which the circumference with radius r which identifies the range of possible 

positions of the unknown point of origin of the signal is: 

(𝜉𝑥 − 𝜉𝑥𝑐𝑎𝑟𝑟𝑖𝑒𝑟)
2
+ (𝜉𝑦 − 𝜉𝑦𝑐𝑎𝑟𝑟𝑖𝑒𝑟

)
2
= 𝑟2    (30) 

To localize the source, it can be readily shown that it’s necessary to use information 

coming from at least three sensors. Indeed, the intersection of the three obtained 

circumferences will give a precise estimation of the unknown position, as shown in Figure 

(2): 

 
Figure 2 - Identification of the Field source. Intersection of the circumferences identifies the Target point. 

As a result of this method, the position coordinates of the field source is obtained and the 

values are collected into the vector 𝑥𝑄 = {
𝜉𝑥𝑄
𝜉𝑦𝑄

}. 

 



7. SOURCE TRACKING 

 The CAI (Centralized Artificial Intelligence) can use the information coming from 

the microphones to localize in the best way the source. To perform such task, it is 

necessary that carriers communicate to each other, in particular their measurements need 

to be synchronized. This need takes place in the so called information sharing, that is 

referred to one-to-one exchanges of data between a swarm of agents, in this case between 

the carriers and the CAI. Sharing tactical information of the agents, such as mutual 

positions and velocities of the surrounding environment is useful for several purposes: 

the collective exploration of the region R, i.e. mission attack the target, could be increased 

in terms of performance because the swarm can reach the target choosing the best 

trajectory with the optimal velocities and, in case of a large population of carriers, 

avoiding each other during the motion through a possible internal avoidance system. Once 

the coordinates of the field source (𝑥𝑄) have been identified, the control algorithm adjusts 

the velocities of carriers in order to achieve the optimal trajectory to reach the engaged 

target. For the present case it has been developed a Linear Quadratic Regulator (i.e. LQR) 

as controller of the migration dynamics. Task of this algorithm is to obtain a feedback 

control law, function of the time-dependent state of the system. In detail the control 

equation is the following: 

𝑢 = −𝐾𝐿𝑄𝑅(𝑥 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡)    (31) 

that minimizes the specific cost function: 

min 𝐽 = ∫
1

2
(�̃�𝑇𝑄�̃� + 𝑢𝑇𝑅𝑢)

𝑇

0
𝑑𝑡    (32) 

Where �̃� = 𝑥 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡, subjected to the dynamic and initial conditions: 

�̇� = 𝐴𝑥 + 𝐵𝑢

𝑥(0) = 𝑥0
      (33) 

In the present example it is reported the case of a controlled migration of a population of 

three carriers to a target point. Initial conditions, such as positions and velocities, have 

been randomly chosen. This problem could be easily extended to a larger number of 

agents. Supposed that within a population of agents, three of them perform the role of 

masters, once this portion of the swarm identifies the source, they can share the location 

data to the other carriers, called slaves, and begin the attack the target. Results for both 

cases are reported in the pictures below: 



 

Figure 3 - Mission Attack the Target in case of a population of three carriers (a) and in the case of a larger 

population (b). Dots represent the initial position of the carriers, lines are the chosen trajectories. 

In Figure (3a) the circles represent the initial position of the three carriers, while the lines 

represents the chosen trajectory to reach the target point. As shown in the picture, 

regardless of the initial motion conditions, through the feedback LQR control law, carriers 

are able to readjust their trajectory during the migration transient. In Figure (3b) same 

dynamic is reported for the case of the migration of a number of carriers equal to 15. In 

this last case, three carriers out of the entire population (the red ones in Figure (3b)), act 

as masters, and perform the role of identifying the coordinates of the source, and together 

with the remaining 12, called slaves (blue ones), perform the trapping mission. 

In Figure (4) several shots of the swarm migration at difference time steps are reported. 

As it is shown, in the first two subplot (4.a and 4.b) all carriers, both masters and slaves, 

are mainly approaching the target position; in the last migration phase (4.c and 4.d) they 

settle their velocity, to eventually dispose themself around the field source. To clarify this 

behaviour, trend of velocity of one of the masters is reported in Figure (5): after an initial 

transient in which carriers are subjected to an acceleration, as the distance between them 

and the target decreases, the control action decreases with time as well (Equation 31). As 

a result, carriers slow down their motion untill they reach the target point 𝑥𝑇 with velocity 

close to zero. 

a) b) 



 

Figure 4 - Swarm migration at different time steps: a) t=0 sec; b) t=1.65 sec; c) t=2.83 sec; d=4.73 sec. Legend on 

the bottom of the picture. 

 

Figure 5 – velocity of one master during the swarm migration. 

 

a) b) 

c) d) 



8.  CONCLUSIONS 

 In this paper we present the outline of a new method for the swarm of sensors 

managing. The goal is to identify in the most effective way the characteristic of the 

acoustic field that is explored by the swarm. 

The analysis leads to include in the model two different differential equations. One is 

related to the swarm dynamics, the second to the acoustic field. 

The CAI includes three modules: RKF, SI, ST. 

The first proposes to reduce the problem to a Kalman Filter that includes the two different 

models, while the third is the source tracking. These two control techniques are used 

combining their abilities. The module of Source Identification is always active. 

The strategy is under investigation to be implemented on real cases in which the swarm 

is made by navigating small marine drones. 
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