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ABSTRACT

In the transmission of vibrations through structural junctions at high frequencies,
the distribution of energy between wave types con suffer important variations. It
means, for example, that incoming energy concentrated in a bending wave
(out-of-plane vibration) can be split in transmitted energy of other wave types:
bending, quasi-longitudinal or transverse shear waves. The goal of the research
is to provide simple formulas to include this phenomenon in a Statistical Energy
Analysis (SEA) model through the Coupling Loss Factor (CLF) coefficients. A
large number of simulations of a population of junctions is generated by means of
a numerical model. Afterwards, this data is post-processed in order to obtain the
Transmission Loss (TL) between the different wave types by means of a procedure
that mimics the Experimental SEA (it is ESEA with some modifications because
in the numerical simulations, the internal loss factor is imposed a priori). Each
junction is characterised by means of a parameter that minimises the scattering of
the TL data with respect to the approximation formula. Some application examples
to building structures are shown.

Keywords: Kij, in-plane, vibration
I-INCE Classification of Subject Number: 43 Propagation in structures
(structure-borne noise)
(see http://i-ince.org/files/data/classification.pdf)

1. INTRODUCTION

The acoustic design of buildings according to the regulation EN-12354 [1] requires
the consideration of flanking transmissions. A key parameter is the vibration reduction
index Ki j [2]. It characterises the structure-borne transmission. Some methodologies have
been developed in order to estimate Ki j from the junction parameters by means of simple
formulas. The evaluation of a formula is faster than the simulation of the junction by
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means of complex numerical models or to perform experiments [3]. The Ki j has been
estimated by means of wave-based model in [4, 5], the finite element method (FEM)
in [6] or the spectral element method (SFEM) in [7]. The final output of a large number
of simulations and parametric analyses is often a set of simple formulas that can be used
to simplify the design process [8, 9].

Even if based on three-dimensional models that include all possible wave types
(transverse, quasi longitudinal and bending waves), the mentioned formulations focus the
interest and outputs on the bending-bending transmission. Considering only the bending
waves can be enough for a large number of acoustic designs (out-of-plane displacement
and noise generation from walls is mainly caused by bending waves). However, there are
some evidences in building acoustics that long flanking transmission paths are largely
influenced by in-plane waves [10,11]. Moreover at mid and high-frequencies the bending
behaviour can be non dominant as shown in [7]. Also in the naval industries the effect
of in-plane waves influences the noise control inside the ship cabins [12]. It is also clear
that when formulating Statistical Energy Anlaysis (SEA) models, the energy balance is
incomplete if only bending-wave subsystems are considered. In general, in the complete
modelling of a structure, all wave types need to be considered.

The goals of the present research are:

- To obtain simplified formulas for the estimation of Ki j taking into account all the
transmission mechanisms and the interaction of all wave types

- Find good descriptor parameters in any of the transmission mechanisms and
depending on the plate / shell theory considered

The analysis presented here is restricted to high-frequencies because this is the
frequency range where in-plane waves (transverse and quasi longitudinal) are important
with respect of out-of-plane waves (bending).

2. DATA ANALYSIS AND APPROXIMATED FORMULAS

The methodology used here is based on the following steps:

1. Consider a set of junctions. The material properties and dimensions are typical of
heavy constructions and building acoustics. The damping is constant here with the
internal losses of 0.03. For more details, they can be found in [8, 9]

2. Make the computation of the vibration field due to the excitation by means of a
point force. The simulations are done by means of FEM [13] and SFEM [7]. As
output, the averaged energy on each junction zone and the input power are obtained.

3. This data is used to feed up an Inverse SEA (ISEA) procedure. As output, the CLF
are obtained. Details on the ISEA procedure can be found in [14].

4. The Transmission Loss (TL) of each junction is computed as explained in the
Section 2.2. A general-purpose TL is obtained for each junction by averaging the
results obtained for junctions having different dimensions.

5. An statistical analysis is performed in order to obtain simple expressions that could
approximate the data base of TL for each junction.



2.2.1. Description of the SEA model

A general sketch of the general SEA model for the L junction is shown in Fig. 1. It
considers two subsystems per plate: out-of-plane and in-plane (or bending, and grouped
transverse and quasi longitudinal waves). The couplings between subsystems are multiple
(12). Essentially the following types are distinguished:

– Coupling between out-of-plane and in-plane subsystems in the same junction zone
(pink). This is neglected due to the very soft interaction between subsystems.

– Coupling between out-of-plane and out-of-plane subsystems in different junction
zones (green). Both senses of transmission will be studied together (symmetry in
the transmission is assumed), leading to a single formula.

– Coupling between in-plane and in-plane subsystems in different junction zones
(red), Both senses of transmission will be studied together (symmetry in the
transmission is assumed), leading to a single formula.

– Coupling between out-of-plane and in-plane subsystems in different junction zones
(blue). Both senses of transmission will be studied separately (asymmetry in the
transmission is assumed), leading to two different sets of formulas.
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Figure 1: General SEA model for the L junction. It can consider four different subsystems:
out-of-plane (subsystems 1 and 3) and in-plane (subsystems 2 and 4) for each region. All
the possible connections between them are taken into account.

2.2.2. Compute the TL from the CLF

The assumptions on the SEA model and the definition of subsystems are based on
[10]. It is found that there is close to equipartition of energy between longitudinal and
transverse modes. This allows the model to be simplified by combining longitudinal and
transverse subsystems into a single in-plane subsystem.



The SEA coupling loss factor (from the subsystem i to the subsystem j) is computed
as

ηi j =
cGLi j

πωS i
τi j (1)

where cG is the group velocity of the waves in the subsystem i, S i is the surface of the
plate that is represented in the subsystem i, and Li j is the length of the junction between
subsystems i and j. It is assumed that Equation 1 is valid whatever the combination (or
coupling) of subsystems is considered: out-of-plane with out-of-plane; out-of-plane with
in-plane; in-plane with out-of-plane; in-plane with in-plane. Only the group velocity cG

of the waves must be chosen properly. The output to perform the statistical analysis is the
transmission loss

T Li j = 10 log10

(
1
τi j

)
(2)

because it tends to be less variable with frequency than the CLF and it is a more general
(applicable to other models) quantity with well known physical meaning.

The wave speeds used to compute the TL from the CLF are as follows. For the bending
waves (out-of-plane subsystems)

cB =
4

√
ω2Eh3

ρVh12
(
1 − ν2) =

√
ωhcL

2
√

3
(3)

and the group velocity
cG = 2cB (4)

This is enough for the out-of-plane subsystem. For the quasi-longitudinal wave speed

cG = cL =

√
E

ρV(1 − ν2)
(5)

And the phase velocity of transverse shear waves is equal to group velocity

cG = cT = cL

√
1 − ν

2
(6)

In order to obtain a combined group velocity for the quasi longitudinal and transverse
waves (in-plane subsystems), it is assumed like in [10] that everything is proportional to
the modal densities of the quasi longitudinal nL and transverse nT waves. The relation
between modal densities of both wave types is

nT

nL
=

2
1 − ν

(7)

And the averaged group velocity in the ‘in-plane’ subsystem is

cLT =
cLnL + cT nT

nL + nT
(8)

cLT = cL

1 +

√
2

(1 − ν)

 1
(1 + (2/(1 − ν))

(9)

With all this we can compute the TL from the CLF.



2.2.3. Find the proper parameters

After the generation of a TL database, the next task is to perform the post-process of
data and to be able to find simplified formulas that could approximate all the analysed
junction types. The goal is to find a descriptive parameter for each transmission type and
junction that distinguish between cases and put them aligned, following some shape that
allows ‘easy’ description. The scatter of TL values (groupings in the shape of clouds)
should be reduced by a proper choice of this parameter.

A Ψ
χ

parameter was proposed in [6] for the out-of-plane with out-of-plane connection
(bending-bending transmission). However, in general it is not the best choice for every
transmission type. Some alternatives have been tried. The first one is to define a
generalised Ψ

χ
as follows

Υ =

(
E⊥
Ei

)ε (
ρV⊥

ρV i

)% (h⊥
hi

)σ
(10)

where the exponents can be chosen depending on the analysed junction and transmission
type. Note that for ε = 0.75, % = 0.25 and σ = 2.5, then Ψ

χ
≡ Υ.

The transmission loss is then approximated as

T Li j = C0 + C1Υ + C2Υ
2 + C3Υ

3 (11)

The optimal values of the coefficients ε, % and σ that reduce the scattering of data are
chosen by means of an iterative procedure. They lead to a best fitting curve (in terms of
R2 coefficient for example). This is the procedure used in the results of Section 3.1.

The second possibility is to make some of the coefficients in Equation 11 variable with
frequency. The transmission loss is then approximated by an equation of the type

T Li j =
(
C0,0 + C0,1 f + C0,2 f 2

)
+

(
C1,0 + C1,1 f + C1,2 f 2

)
Υ + C2Υ

2 + C3Υ
3 (12)

This is adequate for frequency-dependent outputs.
Finally, another possibility is to consider some of the parameters defined in [15] to

study these type of junctions by means of semi-infinite plates and wave theory:

β =
cB⊥

cLi
or

cBi

cL⊥
(13)

which are not dimensionless parameters.
For the results presented in this document, only the first option has been explored.

3. RESULTS: L-JUNCTION

The analysis of an L junction is considered here as an example. In all the results
shown here, the SFEM uses the Kirchhoff-Love theory to model the bending behaviour.
The main difference with the Uflyand–Mindlin theory ( [16, 17]) is the frequency limit of
physical validity of the model and the optimal values of the parameters ε, % and σ in order
to obtain a best fiting.

Two kind of outputs are shown. In Section 3.1 the TL values averaged in the third
octave bands between 1000.0 Hz and 5000.0 Hz. In Section 3.2 the dependence with
frequency is shown.

The simulations are divided in two groups depending on the transmission sense. For
example, the bending-bending TL can be computed from the CLF η1,3 or η3,1. The data is
approximation by means of a least squares fitting curve that is based on Equation 11.



3.3.1. Averaged high-frequency outputs

Fig. 2 shows the four different type of transmissions considered: τi,i (red) ; τb,i and τi,b

(blue) and τb,b (green) connections according to Fig. 1 (‘i’ is for ‘in-plane’ and ‘b’ is for
out-of-plane or bending). Each set of points (each of them represents a junction) is plotted
using an optimal set of parameters ε, % and σ to define Υ. There are usually several sets
of values that provide similar curve fitting. So, the optimal solution would not be strictly
unique and at the end, it is an balanced solution between a good value of R2 and a set of
ε, % and σ that could have some physical meaning.

For the τb,b in Fig. 2(a), the results are compared with those obtained with an ISEA
procedure that accounts only for bending subsystems. The differences are not very large,
especially for Υ > 0.1.

The case where the scattering of data is less reduced with the optimal choice of ε, %
and σ is the τi,i in Fig. 2(b).
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Figure 2: L-junction, results averaged for all the bands between 1000.0 Hz and 5000.0
Hz: (a) τb,b, in the definition of Ψ

χ
≡ Υ: ε = 0.75, % = 0.25, σ = 2.5; (b) τi,i, in the

definition of Υ: ε = 0.5, % = 3.0, σ = 2.0; (c) τb,i, in the definition of Υ: ε = 1, % = 0.5,
σ = 2; (d) τi,b, in the definition of Υ: ε = 1, % = 0.5, σ = 2.



3.3.2. Frequency-dependent outputs

The results of Section 3.1 are shown here without frequency average. The fitting curves
are those obtained in Section 3.1. They are included to have a reference in order to see if
the trend and the scatter of data are frequency-dependent.

The curves for τb,b in the Fig. 3 are almost invariable with frequency. The minimum
remains more or less constant in the position Υ = 1.
τi,i in the Fig. 4 remains more or less frequency invariable in its general trend. However,

it suffers a strong reduction of the scatter when the frequency increases.
Finally, the values of τb,i in the Fig. 5 and τi,b in the Fig. 6, exhibit a clear dependence

with frequency. The TL values are smaller for higher frequencies. The scatter of data is
in general reduced for all four cases when the frequency increases.

4. CONCLUSIONS

It has been shown how simple curves can be obtained in order to describe the TL of
an L-shaped junction between different wave types. However, some tasks are pending on
this research:

- In addition to the L-shaped junction, consider the other most common junction
types: T-shaped and X-shaped. And derive analytical expressions for the fitting
curves.

- Find the best parameter Υ for each junction type, plate theory and wave interaction.
Try to reduce the scatter of data. Define also for which junctions the behaviour need
to be considered frequency-dependent.

- Study the influence of damping in the determination of the simplified formulas

- Test the reliability of the proposed formulas in large problems (i.e. a full building
frame). Verify that the provided SEA coefficients are valid to predict the high-
frequency limit of a deterministic model/simulation (FEM, SFEM)

- Comparison with some available models: indications in [15, 18] and complex
models based on wave theories and infinite junctions such as [19].

5. REFERENCES

[1] EN-12354. Building Acoustics: Estimation of the acoustic performance of buildings
from the performance of elements. Technical Report 1–4, 2018.

[2] E. Gerretsen. Vibration reduction index Ki j, a new quantity for sound transmission
at junctions of building elements. In International congress on noise control
engineering, pages 1475–1480, 1996.

[3] C. Crispin, B. Ingelaere, M. Van Damme, and D. Wuyts. The vibration reduction
index Ki j: Laboratory measurements for rigid junctions and for junctions with
flexible interlayers. J. Building Acoustics, 13(2):99–112, 2006.



10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(a) 1000 Hz

10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(b) 1250 Hz

10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(c) 1600 Hz

10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(d) 2000 Hz

10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(e) 2500 Hz

10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(f) 3150 Hz

10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(g) 4000 Hz

10−3 10−2 10−1 100 101 102 103

Ψ/χ

−5

0

5

10

15

20

25

 T
L 

full, Fb->Sb
full, Sb->Fb

fit

(h) 5000 Hz

Figure 3: L-junction. τb,b. In the definition of Ψ
χ
≡ Υ: ε = 0.75, % = 0.25, σ = 2.5.



10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(a) 1000 Hz

10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(b) 1250 Hz

10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(c) 1600 Hz

10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(d) 2000 Hz

10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(e) 2500 Hz

10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(f) 3150 Hz

10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(g) 4000 Hz

10−3 10−2 10−1 100 101 102 103

Υ

−5

0

5

10

15

20

25

 T
L 

full, Fi->Si
full, Si->Fi

fit

(h) 5000 Hz

Figure 4: L-junction. τi,i. In the definition of Υ, ε = 0.5, % = 3.0, σ = 2.0.
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Figure 5: L-junction. τb,i. In the definition of Υ, ε = 1.0, % = 0.5, σ = 2.0. Only in this
case, a frequency-dependent fitting based on Equation 12 has been included (‘fit f´).
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Figure 6: L-junction. τi,b. In the definition of Υ: ε = 1, % = 0.5, σ = 2.
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