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ABSTRACT

An inverse SEA procedure that mimics the Experimental SEA (ESEA) is used
in order to obtain the Coupling Loss Factor (CLF) of structural junctions. The
main differences with respect to ESEA are that: 1) the subsystem energies and
input powers are obtained by means of numerical simulations; and 2) the internal
damping is imposed and must not be determined a posteriori (which allows
reorganisation of the equations). The numerical model is based on the Spectral
Finite Element Method (SFEM). This helps in order to cover a large frequency
range without increasing the number of elements and to efficiently perform a large
number of simulations with different load configurations (both aspects are required
by the inverse SEA procedure). The contribution analyses several aspects such
as: various options to obtain the input power from the numerical model; possible
modifications in the background SEA model in order to avoid negative CLF values;
assessment of the validity of the SEA hypotheses; possible shortcuts in order to
avoid matrix singularities or to deal with abundant data. Finally, it is shown how the
CLF values obtained for simple configurations can be used to model the response of
more complex structures.
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1. INTRODUCTION

Statistical Energy Analysis (SEA, [1]) is the most widely used modelling technique
for vibroacoustic problems at high frequencies. It has been applied to building acoustics
[2], train designs [3] or ships. The reliability of the simulation results depends on many
different aspects. First of all, the SEA hypotheses must be satisfied [4]. Afterwards,
the vibroacoustic system must be properly characterised. This implies performing an
adequate definition of the subsystems (see for example [5]) and precisely characterising
the input power, the internal loses and the energy transfers between them. The internal
losses of a subsystem are characterised by the internal loss factor (ILF). It can be obtained
from tables of material data and experiments. The energy transfers are characterised by
the coupling loss factors (CLF). This is probably the key parameter in order to obtain a
good SEA model of a vibroacoustic system. And it is not an easy task. Some expressions
are available in the literature for the simplest connections. But there are no expressions
for more complex situations. In those cases the use of numerical simulations ( [6]) or
experimental measurements is required.

The SEA parameters (ILF and CLF) can be determined by means of Experimental SEA
(ESEA, see [7]). It mainly consists on the computation of SEA parameters from a set of
experiments performed in the same SEA system. The energy of each subsystem and the
input powers are measured. Afterwards the SEA parameters are obtained in an inverse
way. It is inverse in the sense that the SEA parameters are usually known and used to
predict the energies in each subsystem due to a given excitation (input power). And in
ESEA the energies are the data and the ILF and CLF the outputs.

The main ESEA method is the power injection method. It requires to know the injected
power in each subsystem. However some variations exist. For example [8] proposed
a version of ESEA based on transfer matrices that does not require the knowledge or
measurement of the input power.

ESEA procedures have been applied to multiple fields: building acoustics [9,10], noise
produced by engines [11], application to a metallic box [12]. In fact, the idea behind
ESEA methods can be considered also when the energies and the input powers are not
obtained from experiments but from numerical simulations. We will refer here to Inverse
SEA (ISEA) to talk in general about the idea of obtaining the ILF and CLF by means of
an inverse algorithm whatever the origin of the energies is. A good example can be found
in [13] where an ISEA procedure is used in order to obtain the CLF of two-dimensional
junctions. The energies are obtained by means of the Spectral Finite Element Method
(SFEM).

The advantages of ESEA are clear. It sometimes becomes the only way to estimate
the CLF. This is more relevant in very complex systems and connections where semi-
analytical models are not available and numerical models are difficult to develop (and the
reliability of the results very limited by the drawbacks of standard numerical methods
at high frequencies). However it has also important drawbacks. Some of them are
related with the intrinsic difficulty of performing vibroacoustic experiments or the lack of
repeatability of high-frequency measurements. But some others are directly related with
the mathematical structure of the inversion algorithms. On the one hand, the matrices can
often be very ill-conditioned. This depends on a poor definition of subsystems or the load
configurations considered in order to perform the measurements. On the other hand, the
error propagation can be very important leading to meaningless results. It was shown to
be relevant even for very simple SEA problems composed by few subsystems [6].



The goals of the research are as follows:

1. Analysis of the ESEA methods, or inverse SEA (ISEA) methods in general.

2. Determine under which conditions can be ensured that the solution obtained with
ISEA leads to positive CLF values. Relate existing linear algebra theorems with
physical conditions on the vibroacoustic system and the SEA hypotheses.

3. Verify numerically the theoretical results

4. Apply the ISEA model to estimate the vibration transmission in an L-shaped
junction.

2. METHODS

2.2.1. General SEA framework and notation

A brief review of the SEA equations is done here. More details can be found in [1,14–
16]. For a SEA system with N subsystems, the equilibrium of energy in every subsystem
leads to
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where Πin,i is the power injected to the subsystem i, ω = 2π f is the pulsation of the
problem, ηii is the internal loss factor of the subsystem i, ηi j is the coupling loss factor
between subsystems i and j, and Ei is the energy of the subsystem i.

The net power flow between subsystems i and j can be expressed as

Πnet
i j = ω

(
ηi jEi − η jiE j

)
(2)

and the consistency relationship
ηi jni = η jin j (3)

must hold, where ni is the modal density of the subsystem i.

2.2.2. Lalor formulation for ESEA [17]

The goal of ESEA is to determine the coefficients (ILF and CLF) of the matrix in
the linear system of Equation 1. If the modal densities of the subsystems are unknown,
there are N2 coefficients (supposing that all subsystems are connected and modal densities
unknown). In ESEA, the known information are the energies of the subsystems and the
input powers (in the power injection version of the method). They are measured from an
experiment (ESEA) or obtained from a numerical simulation (ISEA). At least N different
experiments or load cases are required in order to be able to compute all the ILF and CLF.
The N experiments must be done in order to obtain at least N2 equations. They must be



as linearly independent as possible, and can be expressed in compact form as

∑N
j=1 η1 j −η21 −η31 . . . −ηN1

−η12
∑N

j=1 η2 j −η32 . . . −ηN2
...

. . .
...

...
. . .

...

−η1N −η2N −η3N . . .
∑N

j=1 ηN j


=

1
ω



Π1
in,1 . . . ΠN

in,1
Π1

in,2 . . . ΠN
in,2

...
...

...
...

Π1
in,N . . . ΠN

in,N





E1
1 . . . EN

1

E1
2

. . .
...

...
...

...
...

E1
N . . . EN

N



−1

(4)
where Ep

s is the energy in the subsystem s due to the load configuration p and Π
p
in,s is the

injected power in the subsystem s due to the load configuration p.
The inversion of the energies matrix shown in Equation 4 is not the most optimal way

to perform the computation of ηi j. This can be a time consuming operation but also,
and most relevant, a cause of error propagation. The error propagation is important here
because the data obtained from experiments can have some inherent error (noise). A first
strategy to overcome this difficulty is to choose the load configurations in such a way that
the input power is

Π
p
in,s = δs,pΠin (5)

with δs,p the Dirac-delta. This implies that only one subsystem is excited at each load
configuration with the hope that

E s
s >> E s

k for ∀k , s (6)

If this condition is satisfied, the spectral radius of the energies matrix should be smaller
and the error propagation due to the inversion of the matrix less important.

Another option is to reorganise Equation 4 in such a way that a linear system of
equations where the unknowns are the energies can be written. The explicit computation
of an inverse matrix is no longer required (only the solution of a linear system). This
option can be simplified if some CLF ηi j are null due to the definition of the SEA model.
An example of this technique is shown in [10] for some SEA models of junctions. The
limitation of this strategy is the possibility of rewriting the equations when a large number
N of subsystems are involved.

Finally, the reorganisation of the equations proposed by Lalor in [17] is considered
here. It splits the problem in N − 1 linear systems of N − 1 equations. They are expected
to be better conditioned than the full energies matrix in Equation 4 . The CLF are obtained
first. Afterwards the ILF are computed as a post-process.

In the derivation of Lalor form of ESEA, the energy balance in the subsystem s due to
the load configuration p must be considered:
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A system of (N − 1) equations can be obtained for every subsystem i in order to
determine the coupling loss factors ηki for k = 1, 2, . . . ,N and k , i. Each equation m
is obtained by considering in the subsystem s ≡ i the energy balance for the load case
p ≡ i minus the energy balance for the load case p ≡ m. Thus the generic equation is
written as
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for m = 1, 2, . . . ,N and m , i (8)



2.2.3. Analysis of positiveness of the CLF

It is a necessary condition (but not sufficient) that all the coupling loss factors ηki > 0.
This has the physical meaning that the power flows from the subsystem with more energy
to the subsystem with less energy.

Thus the purpose of this section is to study under what conditions the non-negativity of
all the CLF is satisfied by the N − 1 linear systems of equations 8. The problem has been
analysed from an algebraic point of view in [18] where the following theorem is proven:

Theorem 1 Consider a linear system of M equations

M∑
j=1

ai jx j = bi for i = 1, 2, . . . ,M (9)

with the following properties

aii > 0 for i = 1, 2, . . . ,M (10)
ai j ≥ 0 for i, j = 1, 2, . . . ,M and j , i (11)

b j >> 0 for j = 1, 2, . . . ,M (12)

If for all i = 1, 2, . . . ,M, it is satisfied that

bi >

M∑
j=1, j,i

ai jb j/a j j (13)

the linear system has a unique solution with all the coefficients larger than zero (xi > 0
for i = 1, 2, . . . ,M).

The previous theorem can be applied to the system in Equation 8. First of all, we
need to study under which conditions the ESEA system 8 satisfy the requirements of the
Theorem in Equations 10, 11 and 12.

The energy is a positive value. It is in general true that the excited subsystem has a
much larger level of energy that the other subsystems. All together means that

Em
m

Em
i
>> 1 (14)

which allows to ensure that the diagonal term (k = m in Equation 8) of the matrix for the
ith group of CLF is largely positive
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this shows that the system in Equation 8 satisfies the condition 10.
If the difference in the energy level between the excited subsystem and any of the other

subsystems is much larger than the energy difference between any pair of non-excited
subsystems, for the out-of-diagonal terms we have
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(
Em

k

Em
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which satisfies condition 11. This is not true if a load configuration m causes null energy
in subsystem k

Em
k ≡ 0 (17)

while a load configuration i causes non-null energy in subsystem k (Ei
k > 0, even if it is

small). This situation will be commented later in the numerical examples.
Finally, the condition 12 is partially satisfied in the sense that

bm =
Πi

in,i

ωEi
i

> 0 for m = 1, 2, . . . ,N and m , i (18)

but it is not clear to ensure that bm >> 0. In the limit for an isolated system i, bm would
be equal to the loss factor ηi which is a lower bound. But in general, the subsystem i has
always other power flows which makes bm >> ηi.

A nice aspect is that bm has the same values for all m and this allows a simplification
of Equation 13
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By excluding the cases when Em
k ≡ 0, it can be assumed that
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thus Equation 19 can be expressed as
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As commented before, Em
k

Ek
k

must be small (<< 1) because the subsystem k will always
have more energy when directly excited (in the load configuration k) than when another
subsystem m is excited.

The term Ek
i

Em
i

should be ≈ 1 if the subsystem i has similar levels of energy when any
other subsystem is excited. This can be false when we have a very large problem with a
lot of subsystems and most of the input power is lost in the path from k to i.

3. NUMERICAL EXPERIMENTS: STRUCTURAL JUNCTIONS

L-shaped and T-shaped junctions are considered in order to obtain the CLF with ISEA
and illustrate some conclusion of the previous analysis. The numerical simulations are
performed by means of the Finite Element Method (FEM) and the Spectral Finite Element
Method (SFEM). Most of the details of this second numerical model can be found in [19].

In-plane and out-of-plane waves are modelled. The Uflyand-Mindlin theory ( [20]) is
considered to describe the bending behaviour.

The loss factor of the materials is assumed to be known. It is fixed as η = 0.03 here
for the whole frequency range and all the wave types. This is mandatory in ISEA because
the damping must be provided as data of the numerical model. And it simplifies quite a
lot the ISEA analysis.



3.3.1. The SEA model of the L-junction

A general sketch of the SEA model for the L junction is shown in Fig. 1. Here, two
different subsystem types are considered for every plate/shell. On the one hand the one
which is representative of the out-of-plane displacements and the bending waves. For that
case Ei = M < |vn|

2 > /2 = M <
∣∣∣vn,rms

∣∣∣2 >, where M is the total mass of the subsystem,
vn the phasor of normal velocity and the spatial average on the subsystem is considered.

On the other hand, the one which is representative of the in-plane displacements
(grouped transverse and quasi longitudinal waves). In this case the energy is computed

as Ei = M
(
< |vx|

2 > + <
∣∣∣vy

∣∣∣2 >)
/2. Where vx and vy represent here the in-plane velocity

phasors.
The couplings between subsystems are multiple (12). Essentially the following types

are distinguished:

1. Between out-of-plane and in-plane subsystems in the same junction zone (pink)

2. Between out-of-plane and out-of-plane subsystems in different junction zones
(green).

3. Between in-plane and in-plane subsystems in different junction zones (red).

4. Between out-of-plane and in-plane subsystems in different junction zones (blue).
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Figure 1: General SEA model for the L junction. It can consider four different subsystems:
out-of-plane (subsystems 1 and 3) and in-plane (subsystems 2 and 4) for each region. All
the possible connections between them are taken into account.

In order to perform the ISEA procedure, different load configurations need to be
considered. For the L-junction, the four states of Fig. 1 are considered.

The power injected by a point force acting on a plate can be computed in two different
ways. A first alternative is to use the definition of input power

Πin =
1
2

Re {Fv∗} (22)
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Figure 2: The four ESEA configurations for the L-junction model with four subsystems:
(a) out-of-plane point force in the horizontal plate (floor position); (b) in-plane point
force in the horizontal plate (floor position); (c) out-of-plane point force in the vertical
plate (wall position); (d) in-plane point force in the vertical plate (wall position).

with F the phasor of the point force and v the phasor of the velocity at the application
point, ∗ means complex conjugate. This formula is used for all type of point forces
considered (out-of-plane and in-plane). The restriction is that v must be the velocity in
the direction of the point force.

But since in the numerical simulations the loss factor is known (a big difference with
the experiments), there is at least another way to estimate the input power

Πin =

N∑
i

iωηiiEi (23)

This is based on a global energy balance, assuming that the input power must be equal to
the sum of the energy destroyed in all the subsystems. Note that this is possible because
in the numerical simulations ηii is known a priori.

3.3.2. Outputs for ISEA

In this section some examples of the outputs obtained with the numerical simulations
are shown. They are the inputs of the ISEA process. The results are obtained with two
different models: one based on FEM and the other on SFEM. Both simulations deal with
the same junctions (L and T-shaped): dimensions, material properties, thicknesses of the
plates, boundary conditions, zone of point force excitation. However, some differences
inherent to each numerical technique exist. For example, the points used to make the
spatial average of the vibration field in order to generate the output are not exactly the
same. The point force that excites the structure is a nodal force in FEM while it must be
represented as a narrow band (in space) force in SFEM (both forces with the same total
magnitude). Also the interpolation field in the extrusion direction in SFEM is based on
trigonometric functions, which is not the case in FEM. In spite of these small differences
between the models, the results are very similar.

Fig. 3 shows a comparison between FEM and SFEM for a T-junction. In (a) we
can see the spatially averaged in-plane velocity after a straight transmission between
aligned elements when one of them is excited with an out-of-plane point force. In (b)
we can see the spatially averaged out-of-plane velocity after a right-angle transmission
between orthogonal elements when one of them is excited with an in-plane point force.



They are representative of all possible interactions between the SEA subsystems (load
configuration versus subsystem energy).
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Figure 3: Vibration fields in a T-junction: (a) with point force orthogonal to the plate
plane (it mainly generates bending), in-plane averaged velocity due to the straight
transmission (to the front plate); (b) with point force in the plane of the plate (it generates
mainly in-plane vibration), out-of-plane averaged velocity in the zone forming a right
angle with the excited zone.

With the results in Fig. 3, the energies Ep
s can be computed. The other important

aspect for the most popular versions of ESEA / ISEA is to determine the power injected
to the subsystems. Fig. 4 shows how the injected power is obtained from the numerical
model. Two possibilities are considered: using Equation 22 that considers the definition
of injected power or using Equation 23 that considers a global balance of injected power
and destroyed energies. From the numerical point of view, the first option requires an
additional post-process of the results. But it reproduces better the experimental procedure.
It is sensitive to the precision of the numerical model because the point where the force is
applied tend to be in the zone of concentration of larger numerical errors. The second
option, global balance of energies, is only valid if the SEA hypotheses are satisfied
(because it is based on a SEA energy balance and not on the definition of input power).
Consequently, the convergence of both methodologies to a single value of input power is
an indirect indicator on the compliance of SEA hypotheses.

A first aspect to be noted is the similitude between the FEM and SFEM results.
Fig. 3(a) shows the input power when the excitation is an out-of-plane point force. In
that case the curves corresponding to the both procedures to measure the input power are
similar even at low frequencies. It probably means that SEA hypotheses (concerning the
input power) are early satisfied even at mid-low frequencies for this case. The density
of bending modes is large. Fig. 3(b) shows the input power when the excitation is an
in-plane point force. In this case the curves corresponding to the both procedures to
measure the input power are only similar for frequencies higher that 300 Hz. It probably
means that SEA hypotheses for subsystems modelling the in-plane vibrations are only
satisfied at higher frequencies. This is probably due to the smaller modal density of
modes involving in-plane displacement. At low and mid frequencies, very few of them
can be found if compared to the bending modes.
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Figure 4: T-junction, simulation by means of FEM and SFEM. Input power due to the
point force computed in different ways: (a) point force orthogonal to the plane of the
left plate (it generates out-of-plane vibration); (b) point force in the plane of the plate (it
generates mainly in-plane vibration).

3.3.3. Positiveness of the CLF

The ISEA analysis applied to the L-shaped junction illustrates the problem with
negative values of the CLF. A large population of junctions have been considered, with
variations on: the material properties, the thicknesses and the plate dimensions (specific
data can be found in [21]). The result shown here are illustrative for most of the tested
cases.

Fig. 5 contains the CLF obtained when all possible couplings between subsystems are
allowed. It shows the CLF η2,1, coupling between in-plane and out-of-plane subsystems
in the first plate; and η3,4 coupling between out-of-plane and in-plane subsystems in the
second plate averaged in third-octave frequency bands. For many of the bands the symbol
is not shown or there is a vertical line. This means that the CLF is negative. This
also happens for η1,2 and η4,3. It is for all the CLF between out-of-plane and in-plane
subsystems in the same plate. This is of course not desired. The cause is that the energies
E2

1, E1
2, E4

3, E3
4 are null or almost null. When one of these subsystems is directly excited,

almost no energy flows to the other. This is the ESEA drawback explained in Equation 17.
The linear systems to be solved can be almost singular or every ill conditioned. The

CLF tend to zero (much smaller than the other CLF values) or oscillate between positive
and negative values. This happens more often for low frequencies.

In order to overcome this drawback, a reformulation of the ESEA procedure for the L-
junction is considered. It consists mainly in the determination a priori of the less important
CLF and neglect them from the very beginning.

4. CONCLUSIONS AND FUTURE WORK

An analysis on the positiveness of the CLF values obtained as output of an ESEA
process is done. Some tasks are pending on this research:

- Check the dependence of the CLF on the ILF. For the moment all the analysis has
been done with ILF = 0.03.
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Figure 5: CLF obtained by means of the ISEA procedure applied to an L-junction: (a)η2,1;
(b)η3,4. Each case correspond to different junction dimensions.

- Analysis of the performance of the ESEA / ISEA techniques in this context and if
possible propagation of errors.

- Analyse the applicability of the obtained CLF to the simulation of a larger problem.

- Discussion on the different ways to compute the input power caused by a point
force. Use it as a systematic verification of the SEA hypotheses.
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