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ABSTRACT

There are many doubts about the proper calculation of the sound absorption coefficient
of the porous materials when applied in a room, under diffuse field. The simple use of
impedance tube data for this purpose (according to ISO 10534-2, [1]) is not entirely
correct since it considers only incident plane waves. There are several diffuse-field
sound absorption calculations in the literature, but many of them cannot realistically
approximate the measured data in the reverberant chamber, according to ISO 354, [2].
The most interesting approach considers the exact finite dimensions of the absorbent
panel within the room but the calculation isn’t clear. The current work deals with
the possibilities of calculation and prediction of diffuse field sound absorption. For
this purpose, saound absorption data have been obtained up to 5 kHz from literature.
Two-dimensional finite and boundary element methods that consider the angle of sound
incidence and refraction inside the material will also be approached as an alternative
simulation. At the end, comparisons between reverberant chamber results and the cited
models are made. Different porous panel dimensions are evaluated using the validated
model.
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1. INTRODUCTION

Nowadays, the correct characterization of porous absorbers and resonators is very
important for a great final result. Many industries or companies lack information on
the acoustic characteristics of absorbent materials. Manufacturers usually present sound
absorption data in octave bands, obtained experimentally, without further information.
However, when the acoustic designer needs to perform finite element or acoustic ray
analysis, it would be valuable to have more detailed information, allowing a careful choice
of the material to be used. Often the designer does not have direct access to the materials
or enough area to carry out a reverberant chamber test. Sometimes, when working with
new materials or combinations, some have used impedance tube data, since only small
samples are needed. However, it is known that such results are not valid for a diffuse
field sound environment, as is the case for example in common rooms such as a theater or
auditorium.

For the designer or acoustic engineer, it would be quite useful to have access to a
reliable simulation model that could allow accurately extracting the sound absorption
of a reverberant chamber without expensive measurements, but only using input data
obtained from simpler impedance tube measurement, such as surface impedance for
normal incidence, or even better, complex wave number and complex density on
the frequency domain. From these data, one can use inverse methods for extracting
macroscopic parameters; alternatively, when small samples are available, the two-cavity,
two-thickness or three microphones methods are also practical and do not require
additional acoustics instrumentation (for further details, see [3], [4] and [5]).

Another issue is the possibility to test changes in shapes, curvatures, differentiated
surfaces, bass traps among others. In fact, it is useful to be able to obtain and use the
correct coefficients for the exact panel dimensions in the acoustic model of a room. One
can then verify how the diffuse field sound absorption changes with the panel area or
shape of the absorber panel.

Some empirical and theoretical models are available with different levels of accuracy.
The intention of this work is to evaluate different strategies of estimating the diffuse
field sound absorption coefficient, testing them for the case of a single and uniform
layer of material (melamine foam). The next sections intend to present the mathematics
fundamentals which form the bases of the analytical and numerical approaches. Then,
some results are presented and discussed.

2. FUNDAMENTALS

The first approach to be presented is based on the oblique acoustic plane wave
solution including incidence and refraction inside a simple porous absorber layer, like
an equivalent fluid. In the second approach, a very similar strategy is applied, but
making use of a 2D finite element model to extract the surface impedance and associated
refraction effects inside the material for every oblique plane wave incidence, between
normal and grazing angles. Both are decoupled to the external air medium, but consider
the impedance radiation effects of the finite sample edges to recover the coupling and the
correct diffuse absorption. The third approach is the complete solution of a 3D boundary
element model that couples the internal porous material to an external air medium.
Here the radiation impedance is already physically included when the incident sound
power and the sample sound power absorption of a finite size of single porous layer are



calculated.

2.2.1. Analytical oblique acoustic plane wave

According to [6], the surface impedance of a single porous layer, assuming plane wave
oblique incidence, can be calculated as Equation 1,

Z̃s(θi) = −j
Z̃c

cos (θt)
cot

[
k̃c cos (θt) d

]
, (1)

that depends on the oblique incidence angle and transmitted angle, which can be found
using the Snell-Descartes law [7], given by Equation 2,

θt = arcsin[(k0/k̃c) sin(θi)], (2)

in which the air characteristic impedance is Z0 and the wavenumber is k0 = 2π f /c0.
Observing the porous absorber side, the complex equivalent wavenumber in the porous
material is k̃c and the complex characteristic impedance is Z̃c, which can be obtained from
the complex Bulk Modulus, K̃eq, and equivalent fluid density of the porous material, ρ̃eq.

The representation of wave incidence and wave refraction inside the porous layer can
be seen in Figure 1. Here, d is the thickness of the porous sample, being infinite on the
horizontal plane.

porous absorber

air

...                                                   ...

Figure 1: Oblique plane wave incidence over an infinite porous absorber.

The analytical model assumes that the layers are infinite in the lateral directions (x
axis). Therefore, the resulting prediction tends to be biased relative to measurements
registered with samples of finite size. To account for this effect, the influence of the
radiation impedance of the finite sample is included in the calculation. A single equivalent
fluid layer of rectangular dimension is represented in Figure 2, where the elevation and
azimuth angles of plane wave incidence, (θi, φ), are also represented.

The normalized radiation impedance seen by the finite rectangular absorber can be
calculated as in Equation 3 (for more details, please see [8], [9], [10] and [11]),

Z̃rad(θi, φ)
Z0

=
jk0

2πab

∫ a

0

∫ b

0
4 cos (k0µxκ) cos

(
k0µyτ

) e− jk0
√
κ2+τ2

√
κ2 + τ2

(a − κ)(b − τ)dκdτ. (3)

This Equation 3 can be solved numerically through the Matlab’s 2016 double
integration function called "integral2(fun, 0, a, 0, b)". Some simplified equations for
radiation impedance can be found in [12] and [13], but these were not evaluated in
this work. The terms µx and µy are defined by µx = sin(θi) cos(φ), µy = sin(θi) sin(φ),



Figure 2: An incident wave impinging upon a single equivalent fluid layer of rectangular
shape with dimensions a × b. Adapted from [8].

respectively. The incident sound power over the sample area due to a plane wave
incoming from a given direction in a 2D space (x-z plane) can be calculated as

Πinc(θi) =
| p̃inc|

2 ab
2Z0

cos(θi), (4)

in which p̃inc is the complex amplitude of the incoming plane wave. Sources of real
unitary amplitude can be applied for simplification. The impedance radiation effect due
to the frame is not accounted, so the incident sound power considers an infinite free space
(denoted by the subscript ’inf’). The radiation impedance is simply Z̃rad = Z0/ cos(θi).

Specifically, the diffuse field absorption coefficient for any elevation or azimuth angle
is calculated as α(θi, φ) = Πabs/Πinc. The absorbed sound power by a porous sample of
infinite dimension in terms of free space radiation impedance is

Πabs,inf(θi) =
|p̃inc|

2 ab
2Z0

 4 Re
(

Z̃s(θi)
Z0

)
∣∣∣∣ Z̃s(θi)

Z0
+ 1

cos(θi)

∣∣∣∣2
 , (5)

in which ab is the surface area portion where the absorbed sound power was calculated.
On the other hand, the absorbed sound power carried out by a finite porous sample must
consider the exact tridimensional radiation impedance, Z̃rad(θi, φ), and it is calculated by
Equation 6,

Πabs,fin(θi, φ) =
|p̃inc|

2 ab
2Z0

 4 Re
(

Z̃s(θi)
Z0

)
∣∣∣∣ Z̃s(θi)

Z0
+

Z̃rad(θi,φ)
Z0

∣∣∣∣2
 . (6)

Applying the trapezoidal rule of numerical integration for 90° elevation and 360°
azimuth angles, it is possible to find the incident and absorbed sound power. The common
term |p̃inc|

2 ab/2Z0 can be simplified and the diffuse field absorption coefficient due to an
infinite porous sample is

αinf =

∫ 2π

0

∫ π/2

0
Πabs,inf(θi) sin(θi)dθidφ∫ 2π

0

∫ π/2

0
Πinc(θi) sin(θi)dθidφ

=

∫ π/2

0
α(θi) cos (θi) sin (θi) dθi∫ π/2

0
cos (θi) sin (θi) dθi

. (7)



The oblique absorption coefficient, in this case, is α(θi) = 4 Re
(

Z̃s(θi)
Z0

)
/
∣∣∣∣ Z̃s(θi)

Z0
+ 1

cos(θi)

∣∣∣∣2.
The diffuse field absorption coefficient due to a finite porous layer can be evaluated as

αfin =

∫ 2π

0

∫ π/2

0
Πabs,fin(θi, φ) sin(θi)dθidφ∫ 2π

0

∫ π/2

0
Πinc(θi) sin(θi)dθidφ

. (8)

Apparently, Equation 8 can well represent the absorption of a rectangular porous
sample measured inside a reverberant chamber over diffuse field (please, see [8]).
Numerical approaches are going to be proposed in the next section.

3. METHODOLOGY

In this section, two approaches are presented to estimate the diffuse field sound
absorption of a porous sample. Although the analytical model is an interesting way of
solving the problem, it is limited to flat surfaces of rectangular shape. So, two numerical
approaches are here proposed which may allow overcoming this limitation. The first
proposal is a bi-dimensional finite element model decoupled of the external medium/air,
while the second is a three-dimensional boundary element model with a coupling between
the porous material and the external air medium. These two methodologies may allow
geometrical changes in the surface of the sample, and indeed the three-dimensional BEM
model may allow to model any shape or size.

3.3.1. Finite element model - FEM 2D

An equivalent 2D porous layer can be represented by a finite element model (FEM)
considering the complex bulk modulus, K̃eq(ω) , and equivalent fluid density, ρ̃eq(ω). The
elementary finite element mass and stiffness are presented in Equation 9 and Equation 10,
respectively,

Qe
i,j =

1
K̃eq(ω)

∫
ζ1

∫
ζ2

Ni (ζ1, ζ2) Nj (ζ1, ζ2) det(J)dζ2dζ1, (9)

He
i,j =

1
ρ̃eq(ω)

∫
ζ1

∫
ζ2

[
J−1∇Ni (ζ1, ζ2)

]T [
J−1∇Nj (ζ1, ζ2)

]
det(J)dζ2dζ1, (10)

in which the linear shape functions are Ni and Nj. For further details, see references [14]
and [15]. The term J is the Jacobian matrix of the local/global coordinates transformation.
After the elementary assembling procedure, the dynamic movement equation is[

H − ω2Q
]
{ p̃} = −jω{q̃}, (11)

that can be solved using a direct method. In that equation, {q̃} is the nodal force vector
representing the acoustic volume velocity of the sources. Considering a plane wave
oblique incidence (see Figure 3) the volume velocity loading over the surface nodes (red
points) was calculated for 90° elevation angles, [0, π/2].

The refraction effect is already physically represented by the FEM model and the
normal surface impedance, Z̃s(θi), was evaluated for all the surface nodes, and a mean
value was taken for each frequency. This FEM procedure approach only replaces the
analytical surface impedance shown in Equation 1. All subsequent procedures for
considering the finite sample size and impedance radiation effect to couple the external



Figure 3: Decoupled finite porous absorber represented by FEM 2D. The red points
represent the nodal acoustic velocity due to the oblique plane wave incidence over the
surface. The horizontal x axis dimension is a = 4 [m].

medium were accounted through the analytical equations already mentioned (Equation 3
to Equation 7).

3.3.2. Boundary element model - BEM 3D

This classic formulation of the Boundary Element Method (BEM) can include the
coupling between the external air and the internal porous medium, and it allows the
simulation and study of any type of geometry, incorporating the associated shape effects.
In addition, the effects of radiation impedance are already automatically recovered and
any analytical correction of this term is required.

A residual or weak integral formulation together with the Green’s function for the test
function leads to the Kirchhoff–Helmholtz integral equation as (for further details, see
ref. [16] and [17]),

cp p̃ (x0) = −jρω
Nbe∑
j=1

ṽ(x, ~n)
∫

Γ j

G (x, x0) dΓ j −

Nbe∑
j=1

p̃(x)
∫

Γ j

H
(
x, x0, ~n

)
dΓ j + p̃inc (x0, xs) ,

(12)
in which x0 represents the center coordinate of the boundary element be above the

surface Γ j. The terms x and xs represent the boundary nodes and sources coordinates,
respectively. It can be condensed using a matrix form as

jωρGṽ + Hp̃ − 0.5Ip̃ = p̃inc. (13)

In this case, the acoustic boundary integral equation is set up for the inner and
outer field, respectively. Combined with normal acoustic pressure and particle velocity
continuity on the surface, the integral equation can be expressed as (see [18], [19]){

jωρ0Gair{ṽ} + Hair { p̃} = { p̃inc}

−jωρ̃eqGpor{ṽ} + Hpor {p̃} = 0 , (14)

or then, [
jωρ0Gair Hair

−jωρ̃eqGpor Hpor

] {
ṽ
p̃

}
=

{
p̃inc

0

}
. (15)

Here, the terms Hair and Hpor must account the −0.5I part that comes from the
collocation constant, cp. The solution is found by direct Gauss elimination of the
equation system. Recovering the acoustic pressure and particle velocity throughout the



boundary surface, the external acoustic pressure at field points with coordinates xfp can
be calculated from

p̃
(
xfp

)
= −jρω

Nbe∑
j=1

ṽ(x0, ~n)
∫

Γ j

G
(
x0, xfp

)
dΓ j−

Nbe∑
j=1

p̃(x0)
∫

Γ j

H
(
x0, xfp, ~n

)
dΓ j+p̃inc

(
xfp, xs

)
.

(16)
To find the sound power absorbed by the porous sample, Πabs,bem, according to [20], the

numerical integration can be performed directly over the boundary surface of the porous
material, S , as presented on Equation 17,

Πabs,bem =
1
2

Re
[∫

S
p̃ṽ∗ndS

]
≈

1
2

Re

 Nbe∑
j=1

p̃(x0)ṽ∗n(x0)S j

 , (17)

where the surface pressure, p̃, and the complex conjugate of the normal surface velocity,
ṽ∗n, are used to find the absorbed power. A large number of real point sources (62248
sources) were distributed in an 1/8th of a sphere (positive x, y, z quadrant). All the sources
are used at the same time and are positioned in a radius of 60 meters from the sample
center coordinate (their effect is almost that of a group of plane waves). These sources
have unit pressure and are equally spaced, trying to represent the dispersion caused by a
complete reverberant field.

The incident sound power, Πinc,free, is evaluated using the fundamental wave
solution, from Green’s function. A finite difference of the pressure over the
boundary area, or p-p method, was used to calculate the incident sound intensity,
Iinc(ω) ≈ − Im

[
p̃1 · p̃∗2

]
/2ρ0ω∆d, in which ∆d = 0.001 [m] is the p-p spacing (more

details in [21], [22]). The incident power in free field space evaluated over the sample
surface without any porous material is Πinc,free =

∑Nbe
j=1 Iinc jS j. The diffuse field absorption

coefficient is αbem = Πabs, bem/Πinc, free. A boundary element mesh of a sample with 60
[mm] tick and lateral sides a = 4 [m], b = 3 [m] is shown in Figure 4.

This internal/external coupled model is symmetric on x = 0 and y = 0 planes. The
plane z = 0 represent the rigid floor where the sample is supported. Those symmetry
planes were used here to prevent computational cost and reduce simulation time.

3.3.3. Experiments

Some important details are presented here about the performed experiments. The
diffuse field experiments were carried out following the recommendations from [2] and
[23]. The results were presented by BASF (Basotect®, G+) and can be seen at [24]. The
normal incidence measurement is presented in [25] and it was done by BASF according
to [1].

The computational analyses were made to normal and diffuse sound incidence of a
melamine foam with 60 mm thick and top area of 4x3 m2. All the macroscopic parameters
were measured using direct methods and some details can be found in [26] and [27].

The macroscopic parameters used with the JCAL-Limp model are flow resistivity, σ =

12, 1 [kNs/m4], porosity, φ = 0, 98, tortuosity, α∞ = 1, 00, characteristics lengths, Λ =

115 [µm], Λ = 116 [µm], total apparent density, ρt = 9, 6 [kg/m3]. The statical thermal
permeability considered here is k′0 = 1.51x10−9 [m2].

The impedance tube standard [1] proposes a simplified calculation based on London’s
equation to estimate the diffuse field absorption using the normal incidence impedance



Figure 4: Example of boundary element mesh of a porous layer with a = 4 [m] and
b = 3 [m] over a rigid floor (gray) and symmetry planes (red and blue).

tube data, Z̃n. The calculation only considers infinite sample size and the propagation
inside the material is locally reacting (normal transmission and no refraction).The
calculation procedure is depicted in Equation 18,

αd = 8γn

{
1 − γn ln

[
r′/γn + 2r′ + 1

]
+

(
x′/r′

)
γn

((
r′/x′

)2
− 1

)
arctan

(
x′/

(
r′ + 1

))}
, (18)

in which, γn = r′/
(
r′2 + x′2

)
, r′ = Re[Z̃n/ρ0c0] and x′ = Im[Z̃n/ρ0c0]. On the other

hand, from the normal incidence sound absorption, αn, in the 50’s Albert London found
two simple empirical equations, called the first and second London’s models. According
to [28] and [29], they are, respectively,

αb = 8
[
1 −
√

1 − αn

1 +
√

1 − αn

]2 [
2

1 −
√

1 − αn
−

1 −
√

1 − αn

2
+ 2 ln

(
1 −
√

1 − αn

2

)]
, (19)

and

αs = 4
[
1 −
√

1 − αn

1 +
√

1 − αn

] [
ln

(
2

1 −
√

1 − αn

)
−

1 +
√

1 − αn

2

]
. (20)

4. RESULTS

Some test results are presented in this section. First, a comparison between impedance
tube measurements (for the case of normal incidence), analytical results, FEM 2D and
BEM 3D models is presented (see Figure 5(a)) . Observing this figure, a good agreement
can be seen between all models and the experimental data, with only a small deviation
occurring at around 2.5 kHz between the experimental and the calculated results. The
boundary element model was run only up to 640 Hz, due to memory and computational
time problems.



In the sequence, Figure 5(b) shows a comparison between several analytical
approaches to estimate the diffuse field sound absorption of the sample. All the tests were
carried out for elevation incidence angle in the range θi = [0, π/2]. The three models
based on London’s work are presented in comparison with experimental reverberation
room measurements. Clearly, using the analytical model that considers a locally reacting
sample of infinite size leads to a erroneous absorption curve compared with the measured
sample, as also occurs for the ISO 10534-2 method. The first and second empirical
models proposed by London can provide a better representation of the shape of the
measured curve, but present quite reduced absorption coefficients, with a difference up
to 0.16 [-]. The analytical finite size model, considering the radiation impedance effect
( θi = [0, π/2] and φ = [0, 2π] ) for a = 4 [m] and b = 3 [m] could reproduce the
measured result very well, as was expected. It is clearly seen that the worst prediction
case was from London’s ISO 10534-2 and the edge radiation effect in fact must be
accounted to obtain better results.
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(a) Normal incidence
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(b) Diffuse incidence and London’s models

Figure 5: Normal incidence modeling comparison with impedance tube (a) and
reverberation room diffuse incidence comparison with London’s and analytical models
(b).

To verify the validity of the analytical model, two approaches were proposed, one using
the proposed finite element model and the other using the boundary element method. The
comparison results between the numerical modeling and experiment can be observed in
Figure 6(a).

The presented results reveal a very good agreement, although some differences are
found above 1 kHz with respect to the BEM 3D (which can be due to the mesh size).
Again, computational memory was a limitation to analyze higher frequencies using the
BEM. The FEM 2D mesh was defined using 20 elements per wavelength ( fmax = 5 kHz)
and the BEM 3D mesh using 12 elements per wavelength ( fmax = 1 kHz). Using a
Intel Xeon® CPU processor, model E3-1240 v5 3.50 GHz, with 16 GB of RAM, each
frequency step takes 11 minutes (255 seconds to assembly matrices and 376 seconds to
solve) to run the in-house developed BEM 3D model with 9386 triangular elements and
4819 nodes. Some parts of the code use parallel processing connected to 4 working cores.

The last result (see Figure 6(b)) is an analytical prediction of the effect of the sample
size . It is possible to see, that considering infinite size for diffuse field incidence,
leads to a very low absorption coefficient compared to the ISO 354 measurement. But,
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(a) Diffuse incidence with finite size
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(b) Sample size effect

Figure 6: Diffuse incidence comparison (a) and sample size effects due to radiation
impedance (b).

in fact, the decrease of the sample’s surface area leads to progressively higher values,
and even exceeds the measured result and the maximum unitary scale for a theoretical
total absorption. A visible peak occurs at 400 Hz considering this type of material and
thickness of 60 mm.

The fact that some reverberant room measurements are made with smaller, joined
sample sizes may cause inter-laboratory deviations in the amplitude of the measured
absorption.

5. CONCLUSIONS

In this work, the authors presented analytical and numerical modeling to predict the
coefficient of absorption of melamine samples measured according to ISO 354 standard
[2], in reverberant room. The proposed numerical methodology considers a finite element
model in two dimensions and the coupling of the radiation to the external medium is
done by the radiation impedance calculated previously. A boundary element model is
proposed in three dimensions, coupling the external medium with the porous material,
directly accounting for all these effects. Physically, the model may be capable of solving
any type of geometry in three dimensions. It is assumed that the FEM 2D model allows
any variation of geometry, but only in the x-z plane.

It is important to emphasize that the correct sample size must be represented in order
to obtain a satisfactory result. The fact of neglecting the internal refraction effects of the
material can lead to some errors, especially for samples of low flow resistivity that tend
to present non-locally reacting behavior. Therefore, according to [30], one might expect
that samples with high flow resistivity can be considered as locally reactive.

The best of the tested empirical models was found to be the second London’s equation,
αs. In addition, the diffuse locally reacting equation from ISO 10534-2 should be avoided,
at least for materials with similar macroscopic properties and dimensions as the one
presented in this paper.
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