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ABSTRACT 

In this work, a new analytical approach for the analysis of multilayer rubber 

bearings is proposed. The method is based strictly on fulfilment of the equations of 

internal equilibrium that are almost independent of the shape of the boundary. 

The approach depends only on static values such as the area and moments of 

inertia of the contour shape. Previous studies have also considered the rigorous 

fulfilment of the equations of internal equilibrium, both in statics and in dynamics, 

as well as their application in the industry. Although these approaches report 

solutions that also satisfy the equilibrium equations at the boundary, they have 

only been applied to circular and annular cross-section shapes, as opposed to the 

greater generality of the solutions presented in this work. The analytical solutions 

obtained here are also mathematically very simple compared with those of 

previous studies. This approach can be used in the context of configurations 

designed to isolate vibrations and to optimize, in a simple way, the elastics 

parameters of multilayer rubber bearings. Results obtained using the proposed 

approach are compared with those obtained through the finite element method. 
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1. INTRODUCTION 

 

In this work a new analytical approach for the analysis of multilayer rubber 

bearings which are widely used in civil, mechanical, and automotive engineering 

applications, is applied to the study of the transmissibility of forces and displacements 

in a multilayer structure.  



 

 

In 1954, Freyssinet [1] proposed the idea of reinforcing rubber blocks with thin 

steel plates. These rubber bearings combine the vertical stiffness of a rubber pad and the 

horizontal flexibility of rubber reinforced by thin steel plates perpendicular to the 

vertical load.  

Evaluation of the horizontal, vertical, and bending stiffnesses is very important 

to predict the dynamic response and to design efficient applications of multilayer 

elastomeric bearings. Research on the proper design of these vibration-isolation systems 

for buildings, bridges, nuclear facilities, and other kind of structures has also been 

reported more recently. They have included theoretical, numerical and experimental 

studies [2, 3, 4], although they used different approaches and assumptions [5]. Among 

them are the works of Gent and Lindley [6] and Gent and Meinecke [7], in which they 

assumed use of an incompressible material, and the studies by Chalhoub and Kelly [8, 

9, 10], in which the material was treated as compressible. Although these approaches 

have presented rigorous solutions to the vibration problem, they have limitations [11]. 

In all of these works, two types of assumptions were made: kinematic assumptions 

about deformation and assumptions about the state of stress, which led to the 

approximate fulfillment of the internal equilibrium equations and rigorous fulfillment of 

the equilibrium equations at the boundary. These kinds of solutions depend on the shape 

of the boundary and present some mathematical complexity. Using a different approach, 

simplified formulae have also been presented to facilitate the design of elastomeric 

bearings [12]. Research on multilayer bearings continues, including theoretical and 

applied studies [13, 14, 15]. 

The method used in this paper [16] is based strictly on fulfilment of the 

equations of internal equilibrium that are almost independent of the shape of the 

boundary. The approach depends only on static values such as the area and moments of 

inertia of the contour shape. Previous studies have also considered the rigorous 

fulfilment of the equations of internal equilibrium, both in statics and in dynamics, as 

well as their application in the industry. Although these approaches report solutions that 

also satisfy the equilibrium equations at the boundary, they have only been applied to 

circular and annular cross-section shapes, as opposed to the greater generality of the 

solutions presented in this work. The analytical solutions obtained here are also 

mathematically very simple compared with those of previous studies. This approach can 

be used in the context of configurations designed to isolate vibrations and to optimize, 

in a simple way, the elastics parameters of multilayer rubber bearings 

 

The paper has been organized as follows. In the introductory section both the 

problem and the solution approach are presented. In the second section a harmonic 

analysis of a problem consisting of two floating sheets and two floating slabs is 

presented. The cases of transmissibility of forces and displacements are studied. Section 

3 presents a numerical example and the conclusions are presented in the last section. 

 

 

2.  HARMONIC ANALYSIS 

Consider the structure showed in figure 1, where two rectangular Cartesian 

coordinate system are defined relative to an origin located at Q1y Q2 , respectively . G1 y 

G2 are the mass center of the plates 1 and 2, O1 and O2  is the center points of the lower 

face of the plate (upper face of the elastics layers). Thus u(x, y,z, t), v(x, y,z, t), and w(x, 

y,z, t) are the displacements of the points of the elastic layer as a function of the 

coordinates x, y, z and time t.  



 

 

Note that h = m/ρpA is the thickness of each plate, where m and ρp are the mass 

and density, respectively. The elastic properties of the elastic layer materials are 

described by its Poisson’s ratio (ν), Young’s modulus (E), bulk modulus (κ), shear 

modulus (G), Lame’s first parameter (λ), and P-wave modulus (M). 

 

 
Figure 1. Geometry of the problem 

 

Usually, there are two types of problems: the transmissibility of forces and the 

transmissibility of displacements. 

 

The following assumptions are made: 

1. No slip is allowed at the bonding surface between the plates and the elastic 

layers or between the elastic layer and the rigid foundation. 

2. The plates stiffness is much greater than that of the elastic layers, so the plates 

can be considered a two rigid bodies. 

3. The thickness of the elastic layers are much lesser than their lateral dimensions. 

4. The displacement gradients in the elastic layers remain sufficiently small 

throughout the subsequent deformations, so it is permissible to apply the 

classical linear theory of elasticity. 

5. For harmonic analyses, the damping of the plates can be neglected, and the 

damping of the elastic layers can be determined from the imaginary part of their 

elastic parameters. 

 

Since the plates are assumed to be two rigid bodies, we can use the fundamental 

equations for the motion of rigid bodies in three dimensions [16]. 

 

The equations that describe the transmissibility of forces are  

𝐹𝑋2,𝑄2
+ 𝐹𝑋1,𝑂1

= 𝑚�̈�𝐺1
 (1) 

𝐹𝑌2,𝑄2
+ 𝐹𝑌1,𝑂1

= 𝑚�̈�𝐺1
 (2) 

𝐹𝑍2,𝑄2
+ 𝐹𝑍1,𝑂1

= 𝑚�̈�𝐺1
 (3) 

𝑀𝑋2,𝑄2→𝐺1
+ 𝑀𝑋1,𝑂1→𝐺1

= 𝐼𝑋𝐺1
�̈�𝑋𝐺1

 (4) 



 

𝑀𝑌2,𝑄2→𝐺1
+ 𝑀𝑌1,𝑂1→𝐺1

= 𝐼𝑌𝐺1
�̈�𝑌𝐺1

 (5) 

𝑀𝑍2,𝑄2→𝐺1
+ 𝑀𝑍1,𝑂1→𝐺1

= 𝐼𝑍𝐺1
�̈�𝑍𝐺1

 (6) 

𝐹𝑋,𝑒𝑥𝑡 + 𝐹𝑋2,𝑂2
= 𝑚�̈�𝐺2

 (7) 

𝐹𝑌,𝑒𝑥𝑡 + 𝐹𝑌2,𝑂2
= 𝑚�̈�𝐺2

 (8) 

𝐹𝑍,𝑒𝑥𝑡 + 𝐹𝑍2,𝑂2
= 𝑚�̈�𝐺2

 (9) 

𝑀𝑋,𝑒𝑥𝑡→𝐺2
+ 𝑀𝑋2,𝑂2→𝐺2

= 𝐼𝑋𝐺2
�̈�𝑋𝐺2

 (10) 

𝑀𝑌,𝑒𝑥𝑡→𝐺2
+ 𝑀𝑌2,𝑂2→𝐺2

= 𝐼𝑌𝐺2
�̈�𝑌𝐺2

 (11) 

𝑀𝑍,𝑒𝑥𝑡→𝐺2
+ 𝑀𝑍2,𝑂2→𝐺2

= 𝐼𝑍𝐺2
�̈�𝑍𝐺2

 (12) 

 

where the principal centroidal moments of inertia of the plate are 

𝐼𝑋𝐺𝑗
= 𝑚

𝐴

6
 

𝐼𝑌𝐺𝑗
= 𝐼𝑍𝐺𝑗

=
𝑚

12
(𝐴 + ℎ2) 

(13) 

𝐹𝑍2,𝑄2
 𝑖𝑠  the  component Z of the forces transmitted by sheet 2 through the surface 

where is  𝑄2;  𝑀𝑍1,𝑂1→𝐺1
  is the component Z of the moment resulting from the forces 

transmitted by sheet 1 across the surface where is 𝑂1and reduced to 𝐺1 and 𝑀𝑋,𝑒𝑥𝑡→𝐺2
 is 

the component X of the moment resulting from the forces transmitted from the outside 

and reduced to 𝐺2. 

Equations 1 to 6 correspond to the dynamic equilibrium of slab 1 as a rigid solid. 

It should be noted that in the case of transmissibility of displacements, the terms due to 

the contribution from the outside disappear in equations from 7 to 12. 

(𝐹𝑋,𝑒𝑥𝑡, 𝐹𝑌,𝑒𝑥𝑡, 𝐹𝑍,𝑒𝑥𝑡, 𝑀𝑋,𝑒𝑥𝑡→𝐺2
, 𝑀𝑌,𝑒𝑥𝑡→𝐺2

 𝑦 𝑀𝑍,𝑒𝑥𝑡→𝐺2
) 

To determine the linear and angular displacements of the mass center, we use 

the following linear approximation [16] between two points P and Q of a plate 

 

{
𝑢
𝑣
𝑤

}

𝑃

≈ {
𝑢
𝑣
𝑤

}

𝑄

+ �⃗�  × 𝑄𝑃⃗⃗ ⃗⃗ ⃗⃗  
(14) 

 

 

is taken as reference for the calculation of the rotations of the plate j at point Oj, which 

is the same as that of the point Qj+1. 

We consider that the movements for each plate j, are given by the following equations 

𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒𝑖𝜔𝑡𝑓𝑢𝑗(𝑥)𝑔𝑢𝑗(𝑦, 𝑧)  

(15) 

 
𝑣𝑗(𝑥, 𝑧, 𝑡) = 𝑒𝑖𝜔𝑡𝑓𝑣𝑗(𝑥)𝑔𝑣𝑗(𝑧) 

𝑤𝑗(𝑥, 𝑦, 𝑡) = 𝑒𝑖𝜔𝑡𝑓𝑤𝑗(𝑥)𝑔𝑤𝑗(𝑦) 

 

Next, the general methodology explained in [18-19], will be applied to the two basic 

problems of transmissibility (displacements and forces). The boundary conditions given 

by the following equations for each plate j can be considered: 

𝑢𝑗(𝑥 = 0, 𝑦, 𝑧, 𝑡) = eiωt (𝑧 𝜃YQ𝑗
− 𝑦 𝜃ZQ𝑗

+ 𝑢Q𝑗
)  

 

     𝑣𝑗(𝑥 = 0, 𝑦, 𝑧, 𝑡) = eiωt (−𝑧 𝜃XQ𝑗
+ 𝑣Q𝑗

) 



 

𝑤𝑗(𝑥 = 0, 𝑦, 𝑧, 𝑡) = eiωt (𝑦 𝜃XQ𝑗
+ 𝑤Q𝑗

) (16) 

(In the case of force transmissibility, the six movements of the plate j = 1 are null). 

Substituting equations 15 into the Lamé-Navier equations in Cartesian coordinates [17], 

we obtain the equations of the displacement in each plate j as 

𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡) = eiωt (Sin(𝑘𝑝𝑥)(𝑑−5+6𝑗 + 𝑦𝑑−4+6𝑗 + 𝑧𝑑−3+6𝑗)

+ Cos(𝑘𝑝𝑥) (𝑧 𝜃YQ𝑗
− 𝑦 𝜃ZQ𝑗

+ 𝑢Q𝑗
)) 

 

(17) 

𝑣𝑗(𝑥, 𝑦, 𝑧, 𝑡) = eiωt
(−Cos(𝑘𝑝𝑥) + Cos(𝑘𝑠𝑥)) 𝑑−4+6𝑗 − Sin(𝑘𝑝𝑥) 𝜃ZQ𝑗

𝑘𝑝

+ eiωt (Sin(𝑘𝑠𝑥)(𝑧𝑑6𝑗 + 𝑑−2+6𝑗)Cos(𝑘𝑠𝑥) (−𝑧 𝜃XQ𝑗
+ 𝑣Q𝑗

)) 

 

 

(18) 

𝑤𝑗(𝑥, 𝑦, 𝑧, 𝑡) = eiωt
(−Cos(𝑘𝑝𝑥) + Cos(𝑘𝑠𝑥)) 𝑑−3+6𝑗 + Sin(𝑘𝑝𝑥) 𝜃YQ𝑗

𝑘𝑝
+ 

+eiωt (Sin(𝑘𝑠𝑥)(−𝑦𝑑6𝑗 + 𝑑−1+6𝑗) + Cos(𝑘𝑠𝑥) (𝑦 𝜃XQ𝑗
+ 𝑤Q𝑗

)) 

 

 

(19) 

To express the 12 equations of dynamic equilibrium (112) as a system of 12 linear 

algebraic equations with 12 unknowns di (i = 1, ... 12), we must: 

1) Bear in mind that, in the problem of transmissibility of movements, 

𝑢Q1
, 𝑣Q1

, 𝑤Q1
, 𝜃XQ1

, 𝜃YQ1
 𝑦 𝜃ZQ1

 are known values (the movements to be transmitted 

and that they want to be reduced), while in the problem of transmissibility of forces 

these values are zero to be able to calculate the reactions transmitted to point 𝑄1, 

which will be expressed in terms of the 12 unknowns di (i=1,…,12). Thus, with the 

stress field in layer 1: 

 

(𝑅𝐹𝑋 , 𝑅𝐹𝑌 , 𝑅𝐹𝑍) = ∬ (−𝜎𝑥, −𝜏𝑥𝑦, −𝜏𝑥𝑧)
𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 Q1𝑑𝑒 𝑙á𝑚𝑖𝑛𝑎 1 

𝑑𝐴
𝐴

 

(𝑅𝑀𝑋 , 𝑅𝑀𝑌 , 𝑅𝑀𝑍)= ∬ (𝑧𝜏𝑥𝑦 −
𝐴

𝑦𝜏𝑥𝑧, −𝑧𝜎𝑥, 𝑦𝜎𝑥)
𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 Q1𝑑𝑒 𝑙á𝑚𝑖𝑛𝑎 1

𝑑𝐴 

 

(20) 

 

2) The rest of the forces exerted on the two plates will be expressed according to the 12 

unknowns di (i=1,…,12), such that: 

a) Plate 1: 

i) With the stress field of layer 1: 

(𝐹𝑋1,𝑂1
, 𝐹𝑌1,𝑂1

, 𝐹𝑌1,𝑂1
) = ∬ (−𝜎𝑥, −𝜏𝑥𝑦, −𝜏𝑥𝑧)

𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 O1 
𝑑𝐴

𝐴
 

(𝑀𝑋1,𝑂1→𝐺1
, 𝑀𝑌1,𝑂1→𝐺1

, 𝑀𝑍1,𝑂1→𝐺1
)= ∬ (𝑧𝜏𝑥𝑦 − 𝑦𝜏𝑥𝑧, −

ℎ

2
𝜏𝑥𝑧 − 𝑧𝜎𝑥,

ℎ

2
𝜏𝑥𝑦 +

𝐴

𝑦𝜎𝑥)
𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 O1

𝑑𝐴 

 

(21) 

 

ii) With the stress field of layer 2: 



 

𝐹𝑋2,𝑄2
, 𝐹𝑌2,𝑄2

, 𝐹𝑌2,𝑄2
) = ∬(−𝜎𝑥, −𝜏𝑥𝑦, −𝜏𝑥𝑧)

𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 Q2 
𝑑𝐴

𝐴

 

(𝑀𝑋2,𝑄2→𝐺1
, 𝑀𝑌2,𝑄2→𝐺1

, 𝑀𝑍2,𝑄2→𝐺1
)= ∬ (𝑧𝜏𝑥𝑦 − 𝑦𝜏𝑥𝑧,

ℎ

2
𝜏𝑥𝑧 − 𝑧𝜎𝑥, −

ℎ

2
𝜏𝑥𝑦 +

𝐴

𝑦𝜎𝑥)
𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 Q2

𝑑𝐴 

 

 

 

(22) 

b) Plate 2: 

 

i) With the stress field of layer 2: 

(𝐹𝑋2,𝑂2
, 𝐹𝑌2,𝑂2

, 𝐹𝑌2,𝑂2
) = ∬ (−𝜎𝑥, −𝜏𝑥𝑦, −𝜏𝑥𝑧)

𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 O2 
𝑑𝐴

𝐴
 

(𝑀𝑋2,𝑂2→𝐺2
, 𝑀𝑌2,𝑂2→𝐺2

, 𝑀𝑍2,𝑂2→𝐺2
)= ∬ (𝑧𝜏𝑥𝑦 − 𝑦𝜏𝑥𝑧, −

ℎ

2
𝜏𝑥𝑧 − 𝑧𝜎𝑥,

ℎ

2
𝜏𝑥𝑦 +

𝐴

𝑦𝜎𝑥)
𝑥=𝑥 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑜 O2

𝑑𝐴 

 

(23) 

 

3) In addition, when performing the previous integrals, so that only 12 unknowns 

remain, it is necessary to use these equations, where the term eiωt has been omitted: 

 

- Between points O𝑗 and Q𝑗 of each layer j, from the field equations 

𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡), 𝑣𝑗(𝑥, 𝑦, 𝑧, 𝑡), 𝑤𝑗(𝑥, 𝑦, 𝑧, 𝑡) at 𝑥 = 𝑒, 𝑦 = 0, 𝑧 = 0 the following 

equations are obtained: 

𝑢O𝑗
= Sin(𝑘𝑝𝑒) 𝑑−5+6𝑗 + Cos(𝑘𝑝𝑒) 𝑢Q𝑗

 

𝑣O𝑗
= Sin(𝑘𝑠𝑒)𝑑−2+6𝑗 − Cos(𝑘𝑝𝑒)

𝑑−4+6𝑗

𝑘𝑝
− Sin(𝑘𝑝𝑒)

𝜃ZQ𝑗

𝑘𝑝

+ Cos(𝑘𝑠𝑒) (
𝑑−4+6𝑗

𝑘𝑝
+ 𝑣Q𝑗

) 

𝑤O𝑗
= Sin(𝑘𝑠𝑒)𝑑−1+6𝑗 + Cos(𝑘𝑝𝑒) (−

𝑑−3+6𝑗

𝑘𝑝
) + Sin(𝑘𝑝𝑒) (

𝜃YQ𝑗

𝑘𝑝
)

+ Cos(𝑘𝑠𝑒) (
𝑑−3+6𝑗

𝑘𝑝
+ 𝑤Q𝑗

) 

 

 

 

(24) 

 

- Between the mass center G𝑗 of plate j and point Q𝑗 of layer j, and using the 

kinematic equations for the rigid plate j, we get: 

𝑢G𝑗
= Sin(𝑘𝑝𝑒) 𝑑−5+6𝑗 + Cos(𝑘𝑝𝑒) 𝑢Q𝑗

 

𝑣G𝑗
= Sin(𝑘𝑠𝑒)𝑑−2+6𝑗 + Cos(𝑘𝑝𝑒) (−

𝑑−4+6𝑗

𝑘𝑝
+

ℎ 𝜃ZQ𝑗

2
)

+ Sin(𝑘𝑝𝑒) (−
ℎ𝑑−4+6𝑗

2
−

𝜃ZQ𝑗

𝑘𝑝
) + Cos(𝑘𝑠𝑒) (

𝑑−4+6𝑗

𝑘𝑝
+ 𝑣Q𝑗

) 

 

 

 

(25) 



 

𝑤G𝑗
= Sin(𝑘𝑠𝑒)𝑑−1+6𝑗 + Cos(𝑘𝑝𝑒) (−

𝑑−3+6𝑗

𝑘𝑝
−

ℎ 𝜃YQ𝑗

2
)

+ Sin(𝑘𝑝𝑒) (−
ℎ𝑑−3+6𝑗

2
+

𝜃YQ𝑗

𝑘𝑝
)

+ Cos(𝑘𝑠𝑒) (
𝑑−3+6𝑗

𝑘𝑝
+ 𝑤Q𝑗

) 

Now, for the rotations we obtain: 

𝜃XG𝑗
= −Sin(𝑘𝑠𝑒)𝑑6𝑗 + Cos(𝑘𝑠𝑒)𝜃XQ𝑗

 

𝜃YG𝑗
= Sin(𝑘𝑝𝑒)𝑑−3+6𝑗 + Cos[𝑘𝑝𝑒]𝜃YQ𝑗

 

𝜃ZG𝑗
= −Sin(𝑘𝑝𝑒)𝑑−4+6𝑗 + Cos[𝑘𝑝𝑒]𝜃ZQ𝑗

 

     

(26) 

 

- Between points Q𝑗+1 y Q𝑗 associated to each plate j, from the equations for the 

rigid plate j and the field equations 𝑢𝑗(𝑥, 𝑦, 𝑧, 𝑡), 𝑣𝑗(𝑥, 𝑦, 𝑧, 𝑡), 𝑤𝑗(𝑥, 𝑦, 𝑧, 𝑡) at 

𝑥 = 𝑒, 𝑦 = 0, 𝑧 = 0, the following equations are derived: 

-  

𝑢Q𝑗+1
= Sin(𝑘𝑝𝑒)𝑑−5+6𝑗 + Cos(𝑘𝑝𝑒)𝑢Q𝑗

 

 

 

 

 

 (27) 

 
𝑣Q𝑗+1

= Sin(𝑘𝑠𝑒)𝑑−2+6𝑗 + Cos(𝑘𝑝𝑒) (−
𝑑−4+6𝑗

𝑘𝑝
+ ℎ 𝜃ZQ𝑗

)

− Sin(𝑘𝑝𝑒) (ℎ 𝑑−4+6𝑗 +
𝜃ZQ𝑗

𝑘𝑝
) + Cos(𝑘𝑠𝑒) (

𝑑−4+6𝑗

𝑘𝑝
+ 𝑣Q𝑗

) 

 

𝑤Q𝑗+1
= Sin(𝑘𝑠𝑒)𝑑−1+6𝑗 − Cos(𝑘𝑝𝑒) (

𝑑−3+6𝑗

𝑘𝑝
+ ℎ 𝜃YQ𝑗

)

+ Sin(𝑘𝑝𝑒) (−ℎ 𝑑−3+6𝑗 +
𝜃YQ𝑗

𝑘𝑝
) + Cos(𝑘𝑠𝑒) (

𝑑−3+6𝑗

𝑘𝑝
+ 𝑤Q𝑗

) 

 

𝜃XQ𝑗+1
= −Sin(𝑘𝑠𝑒)𝑑6𝑗 + Cos(𝑘𝑠𝑒)𝜃XQ𝑗

 

𝜃YQ𝑗+1
= Sin(𝑘𝑝𝑒)𝑑−3+6𝑗 + Cos(𝑘𝑝𝑒)𝜃YQ𝑗

 

𝜃ZQ𝑗+1
= −Sin(𝑘𝑝𝑒)𝑑−4+6𝑗 + Cos(𝑘𝑝𝑒)𝜃ZQ𝑗

 

 

(28) 

 

Once equations 1 to 12 have been expressed as a function of only 12 unknowns, di, for 

each frequency, we can now solve the system of linear equations and obtain their value. 

a) For the problem of transmissibility of displacements: the first step is to apply 

equations 28 and 27 with j = 1 to obtain the six movements of the point Q2. 

Then, these equations are applied again with j = 2 to determine the movements 

of point Q3. 

b) For the problem of transmissibility of forces, we try to apply equations 20 to 

determine the six components of the reaction. 



 

 

3.  NUMERICAL EXAMPLE 

An application of the described methodology has been performed to test the 

theory presented above for the structure shown in figure 1 with two solid plates 

(m = 8 kg, h = 0.0255 m. and A = 0.04 m2 ) and two elastic layers (𝜌 = 20
𝑘𝑔

𝑚3 , 𝑒 =

0.003 𝑚, 𝑀 = 143951 𝑃𝑎, 𝜈 = 0.45). 

 

3.1 Transmissibility of forces 

 Figure 2 shows the frequency-dependent force transmissibility function.  

 
Figure 2. Transmissibility of forces 1. RFX/FX,ext  , 2. RFY/FY,ext as a function of frequency. 

  

3.2 Transmissibility of displacements 

Figure 3 shows the frequency-dependent displacement transmissibility function 

for u, v and w. 

 
Figure 3. Transmissibility of displacements 1. 𝑢𝑄3/𝑢𝑄1 2. 𝑣𝑄3/𝑣𝑄13. 𝑤𝑄3/𝑤𝑄1 as a function of 

frequency. 

 

4.  CONCLUSIONS 

 A new analytical approach for the analysis of multilayer rubber bearings has 

been proposed. The method is based strictly on fulfilment of the equations of internal 

equilibrium that are almost independent of the shape of the boundary. The approach 

depends only on static values such as the area and moments of inertia of the contour 

shape. This method has been applied to solve a simple problem of transmissibility of 

forces and displacements with only two elastic layers and two plates. However, it is 

possible to generalize the formulation for any number of layer/plate combinations. 
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