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ABSTRACT

Many transducers (e.g. microphones) consist of a moving part facing the exterior
on one side and facing a closed cavity on the other. In order to obtain and solve a
model of such transducers, a fully coupled model can be used and the performance
of this model will rely of the performance of the sub-models being coupled. Previous
work has revealed that the performance of an interior lossless BEM formulation
concerning a cavity with rigid walls can pose a limit on the accuracy of a fully
coupled model of the transducer — in particular when including viscous and thermal
losses in the cavity. This paper investigates the accuracy of a lossless acoustic BEM
formulation for cavities with rigid walls at low frequencies and addresses possible
solutions for restoring accuracy.
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1. INTRODUCTION

The Boundary Element Method (BEM) has been a popular and valuable tool for
calculation models of acoustic transducers like microphones. Initially, a major reason for
its use was the easy handling of the infinite domains encountered in e.g. the calculation
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of the free-field response [1]. However, more accurate models are required for very
accurate calculations and for the design of transducers, and microphone models are now
being developed based on a full coupling of the exterior sound field, the diaphragm
and the interior cavity for which viscous and thermal losses are taken into account [2].
The end goal of this research is a unified full model including all relevant effects in the
full frequency range. As discussed in Ref. [2] the Finite Element Method (FEM) has
also proven capable of handling viscous and thermal losses in acoustic models, but the
handling of large and very complex geometries is more of an issue with the FEM than
the BEM.

The problem addressed in this paper is the accuracy at very low frequencies. It is
well known that dealing with low frequencies in hard-walled cavities is a challenging task
since a ’breathing’-type component in the excitation leads to very high sound pressures
in hard-walled cavities [3,4]. Even though this behavior is entirely physically based,
it poses challenges for the numerical implementation of problems involving cavities with
rigid walls, since the solution becomes very sensitive to any imprecisions in the excitation.
Therefore, very high precision of all parts of a coupled formulation of e.g. the microphone
problem is required in contrast with the intuitive reasoning, that since the pressure inside
the cavity is almost constant with respect to the spatial coordinates, very few degrees of
freedom are required to model the sound field in the cavity.

An axisymmetric BEM implementation using the direct method and collocation [5, 6]
is used to investigate the ’cavity problem’ in setups in which viscous and thermal losses
and coupling to the diaphragm and the external sound field are excluded in order to focus
the analysis.

2. THE DIRECT BOUNDARY ELEMENT METHOD

The BEM approach to acoustic radiation and scattering problems is based on the
Helmholtz Integral Equation that relates the pressure p(Q) and normal velocity v,(Q)
on the surface of a body of any shape with the pressure at any point p(P) and the pressure
of an incoming wave p;,.(P). The harmonic time dependence €' is omitted, giving
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where S is the surface of the body, Q a point on that surface and P any exterior or interior
point. The normal vector n is directed into the computational domain. The factor C(P)
is the geometrical constant and represents the solid angle at P. The Green’s function for

3-D free space is
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For fully axisymmetric problems a change to polar coordinates (r,d) allows for the
rewriting of the surface integral to an integral along the generator L of the domain and a
rotational integral [6],

G(R) =
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in which the Jacobian r(Q) is introduced and use of the axisymmetry of p(Q) and v,(Q)
has been made.



Standard collocation results in a matrix equation [5],
0 = Ap + jkocBv, + 47pine, 4)

where p is a vector of pressures at the surface nodes, v, is a vector of the normal velocity
at surface nodes and p;,. 1s a vector of incoming pressure at surface nodes.

Setting up a calculation in BEM by placing a monopole of volume velocity Q,, in the
geometrical center of an enclosure with rigid walls leads to solving the following equation

AP = _47Tpinc’ (5)
where p;,. contains the nodal values of
QikR
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where R is the distance between the point source and the node. It is evident that the
magnitude of the incoming sound field is directly proportional to w.

In the limit of low frequencies and assuming no losses the sound pressure in the
enclosure becomes uniform with a magnitude given by the volume velocity, Q,,, the cyclic
frequency w and the volume of the enclosure V [7],
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Hence, the sound pressure increases at low frequencies as 1/w.

In order for the solution of Equation (5) to obtain the 1/w behavior in the limit of low
frequencies with a right-hand side increasing as w, the condition number of A must show
a 1/w? behavior at least.

Figure 1 shows the magnitude of the analytical and the BEM calculated sound pressure
as well as the condition number as functions of the dimensionless frequency ka for a rigid
sphere of radius a (left part of the figure) and for a circular cylinder of radius a and height
2a (right part of the figure). The analytical solution is the low frequency approximation
of Equation (7) and the excitation is a point source with unit volume velocity placed in
the centre of the cavity. The analytical and the BEM solution coincides in the plot and
both the 1/w behavior of the solution and the 1/w? behavior of the condition number is
confirmed.

3. THE SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) is used to inspect the properties of the A
matrix. The SVD decomposes A into a product of three matrices:

A =USV (®)

in which U and V are unitary matrices: UU" = I and VV¥ = I where the superscript H
denote conjugate transpose. Matrix S is a diagonal matrix, with its diagonal values o;
arranged in descending order. The condition number of A is the ratio of the largest (first)
to the smallest (last) singular value. Figure 2 shows the singular values as a function of
dimensionless wavenumber and their index for the sphere (left) and the cylinder (right).
It is evident that the increase of the condition number observed in Figure 1 is coursed by
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Figure 1: Sound pressure amplitude and condition number as function of dimensionless
frequency ka for a cavity excited by a point source of unit volume velocity. Left: spherical
cavity of radius a; right: cylindrical cavity of radius a and height 2a.

a decrease of the smallest singular value only - all other singular values are practically
constant in the range of frequencies observed. Therefore, the increase of the pressure at
low frequencies is directly linked to a decrease of the smallest singular value.

In the limit of low frequencies, the oscillating part of the kernel in Equation (3)
vanishes and the matrices in Equation (4) become real. Theoretically, the matrix A
becomes singular as the smallest singular value becomes zero. It follows that the
corresponding last column in V becomes the eigenvector corresponding to the eigenvalue
zero. For a hard-walled cavity, it is well-known that this eigenvector correspond to a
constant pressure, and that this eigenvector is orthogonal to all other eigenvectors of the
system. Inspection of the last column of matrix V shows that this eigenvector does not
change rapidly with frequency at low frequencies, which mean that the contribution of
the cavity mode to the total solution is largely determined by the last column in V.

Since, matrices U and V are unitary their inverse equal their complex transpose, and
once the SVD of A has been obtained, the solution of the system of equations Ax = b is
readily found:

x = VIS~'U"Dp ©)

where S7! is diagonal matrix containing the reciprocal of the singular values, 1/0;. The
vector UMb is termed the solution coefficients, and due to the properties of S, where
the last entry is several magnitudes above all other entries, the last entry of U¥b becomes
important for the behavior of the system at low frequencies.

Figure 3 shows the singular value, the solution coefficients and the resulting error
as functions of the dimensionless wavenumber for two test cases where analytical
solutions are available: a pulsating and an oscillating sphere. Two calculations are
shown using the axisymmetric formulation with nine nodes using linear and quadratic
elements respectively. It is worth to note, that the A matrix is the same independent of
the excitation, and that the behavior of the linear and the quadratic formulation is the
same, with the exception that the resulting error is more than one magnitude smaller for
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Figure 2: Singular values as function of dimensionless frequency ka for the BEM
coefficient matrix A. Left: spherical cavity of radius a; right: cylindrical cavity of radius
a and height 2a.

the quadratic formulation, since the geometry of the sphere is much better represented
with quadratic elements. Note, that the error for the pulsating sphere is at a consistent
low level for both formulations whereas the error of the oscillating sphere increase to
more than 100 percent at low frequencies.

In the limit of low frequencies, the solution coefficient of the pulsating sphere tends
to a finite value several orders of magnitude above the last singular value. This results
in the solution being by far dominated by the corresponding cavity mode. On the other
hand, the oscillating sphere does not in theory excite the cavity mode (since the volume
velocity of this vibration should integrate to zero). Indeed the solution coefficient is quite
small and decreases with decreasing frequency but not as fast as the last singular value.
Hence, for very low frequencies, the solution of the oscillating sphere is “polluted’ with
the cavity mode leading to the errors shown. Note, that due to the very high condition
number at low frequencies, corresponding to very small values of the last singular value,
this effect is important even at very small values of the solution coefficient. Therefore, the
calculation is sensitive to even very small errors in the calculation of the matrices - any
numerical imprecision can potentially lead to very large errors.

4. HANDLING THE CAVITY MODE WITH THE SVD

The observations that the cavity mode is connected to the last singular value and that
it is orthogonal to all other modes in the cavity may lead to a possible remedy of the low
frequency difficulty. For the oscillating sphere, the cavity mode should not be present at
all. Having the SVD of matrix A allows for removing the cavity mode simply by putting
the reciprocal of the corresponding singular value to zero: 1/07, = 0 before calculating
the solution with Equation (9). Figure 4 shows the analytical and numerical (with and
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Figure 3: Singular values and solution coefficients of a spherical cavity with pulsating
or oscillating walls as function of dimensionless frequency ka. -*-, Singular values; -o-,
solution coefficients for the pulsating sphere; -x-, solution coefficients for the oscillating
sphere; -+-, relative error for the pulsating sphere; -0O-, relative error for the oscillating
sphere. Left: Linear elements, 9 nodes and 8 elements, right: Quadratic elements, 9
nodes and 4 elements

without the remedy) solution on the interior surface of the sphere at the frequency ka =
107 as well as the relative error as a function of the frequency. It is evident that the
original solution is ’polluted’ with an amount of the cavity mode and that subtracting this
mode lead to a good solution.

The final test case is a step towards a more realistic senario for calculating the
sensitivity of a condenser microphone. A cylindrical cavity with rigid walls of radius
a = 10 mm and a height of 20 um is considered. Such a geometry is representative for
a one inch microphone and besides the small volume it also gives rise to the problem
of close surfaces, which has to be carefully dealt with [8]. The cavity is excited by
the movement of one of the plane end-faces of the representing the diaphragm. The
movement is given by,

(1) = o (Yo (2r) = 1), (10)

in which u, is an arbitrary amplitude, zo ~ 3.83 is the first zero of the derivative of the
cylindrical Bessel function Jy and z; = —0.40 is the value of J at zo. In other words: the
prescribed velocity follows the movement of a diaphragm so that the displacement and
its derivative with respect to the radial direction is zero at the rim. The test case has been
selected so that an analytical solution in terms of two modes can easily be calculated, and
the BEM calculations are made using linear elements with mesh sizes from 7 to 259 nodes
at a frequency of 54 Hz corresponding to k = 1 m™".

Having a discretized geometry and a prescribed normal velocity, it is a simple matter
to calculate the volume and the volume velocity injected in the cavity. Thereby, the sound
pressure due to the cavity mode is easily calculated by Equation (7). Figure 5 shows
the error as a function of the mesh fineness (in terms of nodes) for the original BEM
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Figure 4: Solution of an oscillating sphere at low frequencies. Left: Magnitude of of
the sound pressure as a function of the angle at ka = 107%; -*- analytical solution; -
o0-, original numerical solution; -+-, numerical solution with the cavity mode removed.
Right: relative error as a function of dimensionless frequency; -O-, original solution;
-&-, solution with the cavity mode removed. Quadratic elements, 9 nodes and 4 elements

formulation and for the remedy suggested, in which the cavity mode is removed from the
BEM solution as described above, and then added back by the expression in Equation (7).
It is evident that the proposed strategy is much more numerically stable and that is restores
the convergence of the linear BEM formulation.

S. DISCUSSION AND CONCLUSION

The accuracy of the Boundary Element Method at low frequencies in lossless cavities
has been addressed with an axisymmetric BEM implementation using linear and quadratic
elements. Using the Singular Value Decomposition on the BEM coeflicient matrix, it has
been shown that the physical behavior of the sound pressure - i.e. the increase of sound
pressure at low frequencies due to the ’cavity mode’ - is reflected in a rapid decrease of
the last singular value. The corresponding right singular vector is also the eigenvector
- i.e. the discretized representation of the cavity mode. Even for problems where there
theoretically is no "breathing’ component in the excitation - and therefore no theoretical
component of the cavity mode - the strong ill-conditioning of the BEM coefficient matrix
courses very small imprecisions to ’excite’ the cavity mode, and thereby corrupt the
solution.

In the problems studied here, the interior BEM domain is not coupled to other domains
or a model of the diaphragm. Therefore, errors are only found at very low frequencies.
In coupled problems the level of numerical approximation and imprecision is expected to
be larger, and it can be expected that the low frequency problem will be more severe and
be found at higher frequencies. On the other hand it is worth to note, that the problem is
not a numerical breakdown, in the sense that the behavior observed is physically based.
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Figure 5: Relative error as function of the number of nodes when solving for the interior
sound pressure of a cylindrical cavity of radius a = 10 mm and height h = 20 um with
one end-face vibrating. -*-, using the original formulation; -o-, substracting and adding
back the cavity mode. The frequency is about 54 Hz corresponding to a wavenumber of
k=1m"!

Therefore, any numerical model or method that deals with calculation of lossless cavities
at low frequencies, can potentially suffer of similar issues.

A possible remedy is to subtract the cavity mode by removing it in the SVD before
calculating the matrix inverse, and then to add the component back calculated analytically
in the limit of low frequencies. In the problems considered in this paper, this has been
successful in a range of frequencies below the first non-trivial mode, but it should be noted
that this strategy is not expected to be successful in the full range of frequencies.
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