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ABSTRACT

This study theoretically examines an weakly nonlinear pressure disturbance in
an initially quiescent liquid uniformly containing many spherical microbubbles,
especially focusing on an effect of the liquid viscosity and the thermal conductivity
on the wave propagation process. The use of method of multiple scales (e.g.,
Jeffrey & Kawahara, 1982) and of parameter scaling appropriate to a low
frequency compared with the eigenfrequency of single bubble oscillations and a
long wavelength compared with the bubble radius (Kanagawa et al., 2011) results
a systematic derivation of a far field equation (i.e., nonlinear wave equation).
The main results are summarized as follows: (i) The Korteweg–de Vries–Burgers
equation incorporating the liquid viscosity and thermal conductivity was derived;
(ii) The incorporation of energy equation affects the nonlinear, dispersion, and
dissipation terms; (iii) The liquid viscosity and the thermal conductivity lead to
change considerably the explicit form of coefficient of dissipation term.
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1. INTRODUCTION

The propagation of pressure waves (or acoustic waves) in water containing
microbubbles observed in various fields of basic physics and engineering application
[1–16]. While the formation of shock waves in bubbly liquids negatively affects a fluid
machinery, this is expected to be applied to various medical applications such as a

1kanagawa@kz.tsukuba.ac.jp



shock wave lithotripsy and tumor treatment. In order to develop such an application, an
appropriate formulation of the dissipation effect of waves in bubbly liquids is significantly
important.

Although our previous studies [17, 18] have derived the Korteweg–de Vries–Burgers
(KdVB) equation for a low frequency long wave in bubbly liquids, the dissipation
effect due to the liquid viscosity and the thermal conductivity, have been ignored. The
purpose of this paper is to re-derive the KdVB equation by using governing equations
incorporating the liquid viscosity and thermal conductivity. Thus, we can clarify the
effects of the liquid viscosity and thermal conductivity on the propagation process of
pressure waves.

2. PROBLEM STATEMENT

We shall examine plane progressive waves in an initially quiescent liquid uniformly
containing a number of small spherical gas bubbles. The incident frequency of waves is
considerably lower than the eigenfrequency of bubble oscillations, and the wavelength is
considerably longer than the bubble radius. The liquid phase is assumed as the Newtonian
fluid and the heat flux obeys Fourier’s law.

For simplicity, the viscosity of the gas phase, the phase change and mass transport
across the bubble–liquid interface, are ignored. The bubbles do not coalesce, break up,
disappear, and appear.

3. GOVERNING EQUATIONS

For one-dimensional case, the conservation equations of mass, momentum, and energy
in bubbly liquids are written as follows [19]:

∂ρ∗

∂t∗
+
∂ρ∗u∗

∂x∗
= 0, (1)

∂ρ∗u∗

∂t∗
+
∂ρ∗u∗2

∂x∗
+
∂p∗L
∂x∗
− 4

3
µ∗
∂2u∗

∂x∗2
= 0, (2)

∂ρ∗h∗

∂t∗
+
∂ρ∗h∗u∗

∂x∗
−
∂p∗L
∂t∗
− u∗
∂p∗L
∂x∗
− 4

3
µ∗

(
∂u∗

∂x∗

)2

− λ∗∂
2T ∗

∂x∗2
= 0, (3)

where t∗ is the time, x∗ space coordinate, ρ∗ density, u∗ fluid velocity, p∗ pressure,
h∗ enthalpy per unit mass, T ∗ temperature, µ∗ viscosity (constant), and λ∗ thermal
conductivity (constant); the subscript L denotes the volume-averaged variable in the
liquid phase; asterisk * denotes the dimensional quantity. Noting that our previous
studies [17, 18] neglected the the viscosity in Eq. (2) and the energy equation (3).

The volume averaged density of the mixture, ρ∗, is defined by

ρ∗ ≡ (1 − α)ρ∗L, (4)

where α is the void fraction, and the volume averaged density of the gas is neglected.
Now, α is connected by the number density of bubbles, N∗:

α =
4
3
πR∗3N∗, (5)

∂N∗

∂t∗
+
∂N∗u∗

∂x∗
= 0, (6)



where R∗ is a representative bubble radius. Equation (5) defines α and Eq. (6) corresponds
to the conservation law of N.

Substituting Eqs. (5) and (15) below into Eq. (6), and then substituting Eq. (4) into
Eqs. (1)–(3), we have

∂

∂t∗
(
αρ∗G

)
+
∂

∂x∗
(
αρ∗Gu∗

)
= 0, (7)

∂
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]
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∂
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]
= 0, (8)

∂
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]
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− 4
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− 4

3
µ∗

(
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∂x∗

)2

− λ∗∂
2T ∗

∂x∗2
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where c∗P is the isobatric specific heat, β∗ is the volume expansion coefficient, and the
subscript G denotes the volume-averaged variable in the gas phase.

The Keller equation [20] for spherical symmetric oscillations of a representative bubble
in a compressible liquid is given by(

1 − 1
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DR∗

Dt∗

)
R∗

D2R∗

Dt∗2
+

3
2
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=
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+
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D
Dt∗

(
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)
, (11)

where c∗L0 is the speed of sound in the initial unperturbed pure water, the subscript 0
denotes the initial unperturbed state, and the material differential operator D/Dt∗ stands
for

D
Dt∗
=
∂

∂t∗
+ u∗

∂

∂x∗
. (12)

The system of Eqs. (7)–(11) is closed by the following equations:

(i) Tait’s equation of state for liquid phase,

p∗L = p∗L0 +
ρ∗L0c∗2L0

n

[(
ρ∗L
ρ∗L0

)n

− 1
]
, (13)

where n is the material constant.

(ii) Equation of state for ideal gas,

p∗G
p∗G0
=
ρ∗G
ρ∗G0

T ∗

T ∗0
. (14)

We assume that the temperature of gas phase is equivalent to the temperature of the
bubbly liquids, i.e., T ∗.

(iii) The conservation equation of mass inside the bubble,

ρ∗G
ρ∗G0
=

(
R∗0
R∗

)3

. (15)



(iv) The balance of normal stresses across the bubble–liquid interface,

p∗G −
(
p∗L + P∗

)
=

2σ∗

R∗
+

4µ∗

R∗
DR∗

Dt∗
, (16)

where σ∗ is the surface tension. Remarking that our previous studies [17, 18] have
considered the second term in the right-hand of Eq. (16), and have neglected the
viscosity in Eqs. (9) and (10) and the thermal conductivity in Eq. (10).

4. MULTIPLE SCALES ANALYSIS

In a problem of the so-called weakly nonlinear waves, where a typical nondimensional
amplitude of waves, ϵ, is finite but sufficiently small compared with unity. Various scales
of temporal and spatial variations produced by the weak nonlinearity can be incorporated
systematically by introducing multiple scales (ϵt, ϵx; ϵ2t, ϵ2x, ...) via a small parameter ϵ
(≪ 1) [21].

To do so, the time t∗ and the space coordinate x∗ are firstly nondimensionalized as
t = ω∗t∗ and x = x∗/L∗, respectively, where ω∗ is the typical angular frequency of incident
wave, and L∗ is the typical wavelength. Then, new independent variables based on ϵ is
defined for near field [i.e., the temporal and spatial scales of O(1)] and far field [i.e., the
temporal and spatial scales of O(1/ϵ)]:

t0 = t, x0 = x; t1 = ϵt, x1 = ϵx. (17)

Dependent variables are nondimensionalized and expanded in power of ϵ:

R∗

R∗0
− 1 = ϵR1 + ϵ

2R2 + O(ϵ3), (18)

α

α0
− 1 = ϵα1 + ϵ

2α2 + O(ϵ3), (19)

T ∗

T ∗0
− 1 = ϵT1 + ϵ

2T2 + O(ϵ3), (20)

u∗

U∗
= ϵu1 + ϵ

2u2 + O(ϵ3), (21)

where U∗ is typical phase velocity. Then, the expansion of the liquid density is given by

ρ∗L
ρ∗L0
= 1 + ϵ2ρL1 + ϵ

3ρL2 + O(ϵ4), (22)

which was determined from Eq. (13) [17, 18]. Furthermore, the pressures are
nondimensionalized as

pL =
p∗L
ρ∗L0U∗2

, pL0 =
p∗L0

ρ∗L0U∗2
, pG0 =

p∗G0

ρ∗L0U∗2
, (23)

where pL0 and pG0 are the constants of O(1), and pL is expanded as

pL = pL0 + ϵpL1 + ϵ
2 pL2 + O(ϵ3). (24)

Subsequently, we determine the sizes of nondimensional parameters appearing in
nondimensionalized conservation equations (9) and (10):(

µ∗

ρ∗L0U∗L∗
,

λ∗

ρ∗L0U∗L∗c∗P
,
β∗U∗2

c∗P
,

U∗2

c∗PT ∗0

)
= (µϵ, λϵ, δ, η), (25)



where µ, λ, δ, and η are the constants of O(1). Furthermore, there exists a relationship
of U∗ = L∗ω∗ among U∗, L∗, and ω∗, and we should determine the sizes of three
nondimensional parameters, as follows [17, 18]:(

U∗

c∗L0
,

R∗0
L∗
,
ω∗

ω∗B

)
= (V

√
ϵ, ∆
√
ϵ, Ω
√
ϵ), (26)

where V , ∆, andΩ are the constants of O(1), andω∗B is the eigenfrequency of single bubble
oscillations given by

ω∗B ≡
√

3γ(p∗L0 + 2σ∗/R∗0) − 2σ∗/R∗0
ρ∗L0R∗20

. (27)

5. RESULT: LEADING ORDER OF APPROXIMATION

Equating the coefficients of like powers of ϵ in the governing equations (7)–(11), the
following set of linearized equations as the first-order equations is derived:

∂α1

∂t0
− 3
∂R1

∂t0
+
∂u1

∂x0
= 0, (28)

α0
∂α1

∂t0
− (1 − α0)

∂u1

∂x0
= 0, (29)

(1 − α0)
∂u1

∂t0
+
∂pL1

∂x0
= 0, (30)

(1 − α0)
∂T1

∂t0
− δ∂pL1

∂t0
= 0, (31)

− ∆
2

Ω2 R1 − pL1 + pG0T1 + 3(γ − 1)pG0R1 = 0. (32)

By combining these equations into a single equation, the linear wave equation for the
first-order perturbation of the bubble radius, R1, is derived:

∂2R1

∂t2
0

− v2
p
∂2R1

∂x2
0

= 0, (33)

where the phase velocity vp as a constant coefficient is given by

vp =

√
∆2/Ω2 − 3(γ − 1)pG0

3α0(1 − α0 − δpG0)
. (34)

Remarking that the appearance of the terms, −3(γ − 1)pG0 and −δpG0, is the essential
difference compared with our previous studies [17, 18]. These terms, i.e., δ and γ,
represents thermal effects and affect the phase velocity vp.

Now, choosing U∗ as

U∗ =

√√
R∗20 ω

2∗
B − 3(γ − 1)p∗G0/ρ

∗
L0

3α0

[
1 − α0 − β∗p∗G0/(ρ

∗
L0c∗P)

] , (35)

gives vp ≡ 1.



From now on, the right-running wave in the leading order of approximation is focused,
and a phase function φ0 is then introduced as

φ0 = x0 − t0. (36)

Then, Eq. (33) reduces to

∂ f
∂t0
+
∂ f
∂x0
= 0, (37)

for f ≡ R1(φ0).

6. RESULT: SECOND ORDER OF APPROXIMATION

Let us proceed the second order of approximation. The following single
inhomogeneous wave equation is obtained:

∂2R2

∂t2
0

− ∂
2R2

∂x2
0

= K( f ;φ0, t1, x1). (38)

From the solvability condition [17, 21] of Eq. (38), we finally obtain the KdVB
equation:

∂ f
∂τ
+ Π1 f

∂ f
∂ξ
+ Π2

∂2 f
∂ξ2 + Π3

∂3 f
∂ξ3 = 0, (39)

τ = ϵt, ξ = x − (1 + ϵΠ0t), (40)

with

Π0 = −
(1 − α0)2V2

2
, (41)

Π1 = −
{

2 +
2 + 3α0δ[2 + α0(1 − δ)]

2α0(1 − α0 − δpG0)
pG0

}
, (42)

Π2 = −
1

6α0(1 − α0)

{
4µ + [4µ + 3α0(1 − α0)V∆]

(
1 +

δpG0

1 − α0 − δpG0

)
+ 3α0λ

δpG0

1 − α0 − δpG0

}
,

(43)

Π3 =
∆2

6α0(1 − α0 − δpG0)
. (44)

All the constant coefficients in Eq. (39), the nonlinear coefficient Π1, the dissipation
coefficient Π2, and the dispersion coefficient Π3, include δ that represents thermal effects.
Furthermore, µ and λ are included in only Π2, that is, both the liquid viscosity and the
thermal conductivity affect only the the dissipation of waves.

Figure 1 depicts the dependence of the dissipation coefficient Π2 on R∗0 for both cases
of the present study and the previous study [18]: Π2 in the present study is smaller thanΠ2

in the previous study. Especially, in the case of R∗0 = 10 µm, whereas Π2 in the previous
study is about −0.11, Π2 in the present study is about −0.22, that is, the dissipation effect
becomes stronger by the incorporation of the liquid viscosity and thermal conductivity.

Furthermore, we clarify the nonlinear coefficient Π1 and the dispersion coefficient Π3

in the present study are larger than those in the previous study. The detailed explanation
will be provided in a presentation.



7. SUMMARY

The weakly nonlinear propagation of plane progressive pressure waves in an initially
quiescent liquid uniformly containing many spherical microbubbles has been theoretically
investigated, especially focusing on the liquid viscosity, the thermal conductivity, and the
incorporation of energy conservation equation. From the method of multiple scales, the
KdVB equation describing a low frequency long wave has been derived from the basic
equations.

As a result, a thermal effect signified by δ influences all the the wave properties, i.e., the
nonlinear, dissipation, and dispersion effects. A detailed physics derived by the resultant
KdVB equation will be reported in a presentation.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 18K03942.

�����

�����

�����

�����

�����

����

������� ������ �����

�
��
��
�
�
��
�
�
	

�
�
��
�

��
�
�	
		
		
		
	
�
�	

���������	���
�����	����� ����

present study

previous study
(b)

��

∗

Π
�

Figure 1: The comparison of dissipation coefficient Π2 between the present study and
previous study [18], where Ω = 1,

√
ϵ = 0.15, α0 = 0.05, p∗L0 = 101325 Pa, ρ∗L0 =

1000 kg/m3, σ∗ = 0.0728 N/m, c∗L0 = 1500 m/s, µ∗ = 1 × 10−3 Pa · s, γ = 1.4, c∗P =
4.18 kJ/(kg · K), β∗ = 2.06 × 10−4 /K, and λ∗ = 0.598 W/(m · K).
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