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ABSTRACT

In conventional approaches for experimental impact sound insulation assessment,
such as the approach of ISO 10140-3, it is (implicitly) assumed that the sound field
that is generated by the impacted structure is diffuse. A diffuse field is by definition
a random field: it represents a conceptual ensemble of rooms with the same volume
and total absorption, but otherwise any possible arrangement of boundaries and
small objects that scatter incoming sound waves. Adopting a diffuse sound field
model in the assessment procedure therefore inherently introduces uncertainty
on the resulting quantities, such as the normalized impact sound pressure level.
When determining such quantities in one particular room, this uncertainty can
be important, especially at the lower frequency end of the spectrum. In this
work, closed-form expressions are derived for quantifying the uncertainty on
experimentally determined impact sound pressure levels and related single-number
ratings that is due to the diffuse field assumption when measurements are carried
out in one particular room. The practical use of the formulas is demonstrated with
two examples: a bare concrete floor and a concrete floor with floating screed.
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1. INTRODUCTION

In noise control engineering, structure-borne sound refers to sound that is generated by
direct mechanical excitation of a structure, such as (a part of) a building, a car body or an
aircraft fuselage [1]. In buildings, structure-borne noise sources include impacts due to
walking people and service equipment. With urbanization accelerating on a global scale,
protecting people against such noise sources has become a major concern. At the same
time, new types of floor systems are being developed. For economical and ecological
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reasons, these are usually made of lightweight materials such as timber, which makes it
challenging to achieve a sufficiently high level of impact sound insulation.

The experimental impact sound insulation assessment of floor systems, e.g., by means
of a rating, is crucial in this context. However, such a rating faces difficulties, as the sound
that is radiated by a particular floor type depends on the excitation, the floor dimensions
and boundary conditions, and the acoustic properties of the receiver room. For this reason,
standardized assessment procedures are used, in which the excitation is fixed, the floor is
tested in a laboratory with suppressed flanking transmission and a sufficiently large floor
opening, and the radiated sound field is taken as diffuse and normalized to a reference
absorption value. An example of such as procedure can be found in ISO 10140-3 [2], in
which the standard tapping machine [3] is used as excitation device, and the frequency-
weighting procedure of ISO 717-2 [4] is employed for generating a single-number rating.

A diffuse field is by definition a random field: it represents a conceptual ensemble
of rooms with the same volume and total absorption, but otherwise any possible
arrangement of boundaries and small objects that scatter incoming sound waves.
Adopting a diffuse sound field model in the experimental assessment procedure therefore
inherently introduces uncertainty in measured results: these will be different for different
rooms with the same nominal properties (total volume and total absorption area). This
uncertainty is known to be inversely related to the modal overlap factor of the room [5].
Since the modal overlap factor increases with frequency, the mean total energy of the
random ensemble of test facilities will be close to the total energy in any particular
member of the ensemble at high frequencies. This implies that at high frequencies, e.g.,
above the Schroeder frequency [6], diffuse fields behave essentially as deterministic, and
they are indeed treated as such in the experimental rating procedures described above.
At low frequencies however, the uncertainty that is inherent in the diffuse field model is
larger because of the lower modal overlap. This implies that considerable variation can
occur when the normalized impact sound pressure level of a given floor is measured in
two different laboratories with low modal overlap at low frequencies.

It would be very interesting if one could quantify the related uncertainty, as this would
allow to assess how well a measurement result obtained in one test facility would carry
over to other test facilities with similar receiver room volume (and obviously, similar test
opening dimensions and floor damping). The purpose of the present paper is therefore
to deliver closed-form expressions for the diffuse-field variance of experimentally
determined normalized impact sound insulation levels and single-number ratings. The
derivation of these practical formulas will be based on insights from fundamental
physics [7] that have led to an expression for the variance of the total energy in a diffuse
field [8–10]. The practical use of the novel expressions that are derived in the present
paper will be illustrated in detail.

2. VARIANCE OF BAND-INTEGRATED SOUND PRESSURE LEVELS IN A
DIFFUSE SOUND FIELD

In this section, a practical formula will be derived for computing the variance (due to
the diffuse field assumption) of the spatially-averaged sound pressure level in a diffuse
sound field that has been obtained by integration over a certain frequency band. This is
performed in several steps: first existing results on harmonic and band-averaged variance
of the total sound energy are discussed, and subsequently a new formula for the variance
of the sound pressure levels is derived



2.1. Variance of the total harmonic sound energy

In a sound field that is composed of plane waves, such as a diffuse sound field, the
time-averaged squared sound pressure amplitude p2(x) at location x relates to the energy
density e(x) via

e(x) =
p2(x)
ρac2 , (1)

where ρa denotes the density of air, and c the sound speed. Consequently, in any sound
field that is composed of plane waves, such as a diffuse field, the spatially averaged
squared sound pressure level

p2
av :=

1
V

∫
V

p2(x)dx, (2)

where V denotes the room volume, relates to the total time-averaged acoustic energy E in
the room via

E =

∫
V

e(x)dx =
p2

avV
ρac2 . (3)

Based on the generalized definition of a diffuse field in terms of the Gaussian
Orthogonal Ensemble [11], Langley and Brown [12] derived the relative variance of the
total sound energy (or, equivalently, the spatially-averaged squared sound pressure) of a
diffuse field under harmonic loading with a deterministic amplitude. The result of this
derivation reads

Var [E]
Ê2

=
Var

[
p2

av

]
(
p̂2

av

)2 ≈
α − 1
πm

+
1

(πm)2 , (4)

where the hat denotes an ensemble average, m is the modal overlap factor of the room

m := ωηn, (5)

ω the (angular) frequency, n the modal density (i.e. the number of modes per radial
bandwidth), η the damping loss factor, and α a loading factor. The damping loss factor
can be determined from the reverberation time T or the absorption A by [13, Eq. 6.59]

η =
6 ln(10)
ωT

=
cA

4ωV
(6)

where ln denotes the natural logarithm, c the sound speed and V the room volume. In
the second equality, Sabine’s reverberation formula was employed. The approximation
in Equation 4 is accurate when m ≥ 0.2. In the present setting, the diffuse sound field
originates from a vibrating structure via an area coupling, in which case α ≈ 2 [8,
Sec. III.D]. The modal density n can be approximated to that of a room with rigid walls,
i.e. [5]

n =
Vω2

2π2c3 . (7)

2.2. Variance of the total band-averaged sound energy

In technical acoustics, it is customary to integrate energetic quantities over frequency
bands, such as octave bands or 1/3-octave bands. For example, the acoustic energy E can
be integrated over a frequency band [ωl, ωu] to yield the band-integrated energy EB:

EB :=
1

2π

∫ ωu

ωl

E(ω)dω, (8)



where the factor 1/(2π) is necessary when E(ω) has units J/Hz; it should be omitted
when the units are J s/rad. Since ensemble averaging is an additive operation, the mean
band-averaged energetic quantities can be immediately obtained by integration:

ÊB :=
1

2π

∫ ωu

ωl

Ê(ω)dω (9)

For the relative variance, the derivation that has led to Equation 4 has been extended to
yield [15]:

Var [EB]
Ê2

B

≈
α − 1
πmB2

(
2B arctan (B) − ln

(
1 + B2

))
+

1
(πmB)2 ln

(
1 + B2

)
, (10)

where the bandwidth parameter B is defined as

B =
ωu − ωl

ωη
(11)

in which ω represents the nominal (or center) frequency of the band. For 1/3-octave
bands, B ≈ 0.23/η, while for octave bands, B ≈ 0.71/η. When the bandwidth tends
to zero, the above mean and variance expressions reduce to the harmonic ones [15]. In
the derivation of Equation 10, it has been assumed that damping and the load spectrum
(which in the present application, boils down to the vibration spectrum of the radiating
structure) be constant over the considered frequency band [15]. This implies that, in order
for Equation 10 to hold with good accuracy, the frequency band of integration should be
sufficiently narrow. Similarly, although Equation 10 has been derived for the special case
w(ω) = 1, it will also hold with good accuracy for any w(ω) that does not vary widely
within the frequency band of integration.

The prediction of the variance of the band-integrated energy over wide frequency bands
is an open problem. In this work, a practical solution is investigated, which consists
of dividing the wide band into several narrower bands that are (i) sufficiently narrow
such that Equation 10 holds with good accuracy, and (ii) sufficiently wide such that
the band-integrated energies belonging to different bands are approximately statistically
independent. Condition (i) requires that for each of the smaller bands j, the following
approximation be accurate:

ÊB, j ≈
ωu, j − ωl, j

2π
Ê(ω j) (12)

where ω j is the center frequency of band j, and ωl, j and ωu, j represent the lower and upper
frequency limits of band j. A possible indicator for condition (ii) is the relative covariance
between the squared amplitude of the point pressure frequency response function at the
upper and lower limits of the frequency band, which can be estimated as [16]:

c(B j) ≈
1

1 + B2
j

(13)

where B j is defined as in Equation 11. When c(B j) � 1, it is reasonable to assume that
condition (ii) holds with good accuracy.

When both conditions are satisfied, the mean and variance of the band-integrated
energy for the narrower bands can be estimated from Equation 9 and Equation 10, thanks
to condition (i). Thanks to condition (ii), the mean and variance of the integrated energy
over the wide band that was subdivided into narrower bands are then obtained as

ÊB =
∑

j

ÊB, j and Var
[
ÊB

]
=

∑
j

Var
[
ÊB, j

]
. (14)



2.3. Variance of the band-integrated sound pressure level

The spatially averaged squared sound pressure is usually represented on a logarithmic
scale, as the sound pressure level Lp:

Lp := 10 log
p2

av,B

p2
0

, (15)

where log denotes the logarithm with base 10, and the reference value is chosen as
p0 = 2 · 10−5 Pa. The subscript B is employed to emphasize that it usually concerns
band-averaged quantities. As discussed above, the total sound energy and the spatially
averaged squared sound pressure have the same relative variance. Furthermore, they
are lognormally distributed in good approximation [17]. If this also holds for the band-
averaged quantities, then the sound pressure level is normally distributed, with mean value

L̂p = 10 log
p̂2

av,B

p2
0

−
C
2
, (16)

and variance

Var
(
Lp

)
=

10C
ln 10

where C := 10 log
1 +

Var [EB]
Ê2

B

 , (17)

and ln denotes the natural logarithm. It can be noted that the ensemble mean of the sound
pressure level is not simply the level of the ensemble mean of the squared sound pressure,
but the error by neglecting the additional term will be smaller than 1 dB as long as the
relative variance of the band-averaged energy will be smaller than 0.6.

In practice, L̂p is usually obtained by averaging the squared sound pressures not over
the entire room volume, but only over the central part of the room, away from the room
boundaries. Due to interferences between incoming and reflected waves at the room
boundaries, the mean energy density will be larger near the room boundaries than in the
central zone of the room. This effect has been quantified by Waterhouse [18]. From his
analysis, it follows that

L̂p,central = L̂p − 10 log
(
1 +

πcS
4ωV

)
(18)

where S is the total surface area of the room. The variance of Lp,central is however still
given by Equation 17.

3. VARIANCE OF SINGLE-NUMBER RATINGS

In this section, it is illustrated how the above theory can be used for practical
uncertainty assessment regarding the single-number ratings for impact sound insulation
that appear in the ISO 717-2 standard [4]. It is furthermore assumed that impact sound
pressure levels have been measured in the laboratory according to ISO 10140-3. This
implies, amongst other things, that an ISO tapping machine has been used as impact
device to excite the floor, that the absorption in the receiver room is normalized to
an equivalent absorption area of A = 10 m2 (resulting in normalized sound pressure
levels Ln) and that the measurements have been performed in 1/3-octave bands. The
methodology is readily generalized to other ratings, either standardized or not.



It may be noted that ISO 717-2 explicitly mentions the format in which the uncertainty
on a single-number rating should be expressed (as an interval centered around the rating
value), but otherwise does not provide any interpretation of this uncertainty (e.g., in
terms of a probabilistic confidence interval), nor the sources of uncertainty that should be
included in the stated value (such as the diffuse field assumption). Here, the uncertainty
will be expressed as a 95 % confidence interval, and the source of uncertainty that is
included is the diffuse field assumption. As discussed earlier, a deterministic diffuse field
can only be achieved in a room with very large (theoretically infinite) volume. So the fact
that measurements are performed in a room of finite volume yet the generated sound field
is taken to be diffuse, generates uncertainty (in terms of limited reproducibility) on the
experimental results.

3.1. Weighted normalized impact sound pressure level

The procedure for obtaining the weighted normalized impact sound pressure level
Ln,w can be summarized as follows. First, compare the measured sound pressure levels
due to tapping machine excitation Ln( f j) with reference values Lref( f j) for all 1/3-octave
bands from f j = 100 Hz till f j = 3150 Hz. Then, shift the reference curve with an
increment ∆Lre f until the sum of all unfavorable deviations (i.e., measured values larger
than reference values) equals 32.0 dB. In other words, determine ∆Lre f such that

∆Lre f = −
32 dB

N
+

∑
j∈S

Ln( f j) − Lref( f j)
N

, (19)

where S denotes the set of 1/3-octave bands in which the measured Ln( f j) is larger than
the shifted reference curve:

S :=
{
j
∣∣∣Ln( f j) − Lref( f j) − ∆Lre f > 0

}
, (20)

and N is the number of elements of S. Normally, ∆Lre f need be rounded to the closest
higher integer, however, when uncertainty is being expressed, this rounding is not
necessary2 [4]. The value of the shifted reference curve at 500 Hz equals Ln,w:

Ln,w = Lref(500 Hz) + ∆Lre f . (21)

Since all Ln( f j) are normally distributed (see Section 2.3), so is Ln,w. When assessing
measurement accuracy, the measured values (in this case Ln( f j)) are usually taken as
the nominal (expected) values L̂n( f j), resulting in L̂n,w. The computation of the variance
however is complicated by the fact that the set S is a random set as it depends on ∆Lre f , in
other words, the number N of elements of S, can be different for different members of the
considered random ensemble of diffuse sound fields. An approximate solution is obtained
by fixing S to the set that is used for determining the expected values:

S ≈ Ŝ :=
{
j
∣∣∣L̂n( f j) − Lref( f j) − ∆L̂re f > 0

}
. (22)

The variance of Ln,w is then obtained as follows:

Var
(
Ln,w

)
= Var

(
∆Lre f

)
=

1
N2

∑
j∈Ŝ

Var
(
Ln( f j)

)
. (23)

2To be more precise, ISO 717-2 requires that ∆Lre f be rounded to the same accuracy of the Ln( f j) values,
i.e., 0.1 dB, in case uncertainty is accounted for.



The variances of the measured sound pressure levels Ln( f j), due to the diffuse field
assumption, can be obtained as discussed in Section 2.3, i.e., through Equation 17 and
Equation 10. The Ln( f j) in the above expression are assumed uncorrelated for each band.
This assumption and its assessment have been discussed at the end of Section 2.2.

3.2. Unweighted linear impact sound level

ISO 717-2 contains a second, alternative single-number rating procedure for impact
sound insulation. The reason is that this additional weighting procedure seems to be more
representative for the A-weighted impact levels as caused by walking for all types of
floor [4, App. A]. The rating is defined as a correction CI to the Ln,w that was discussed in
the previous section:

Ln,w + CI = Ln,sum − 15 dB where Ln,sum = 10 log

∑
j∈S′

p2
av

p2
0

 , (24)

although in this case, the set S′ is defined differently, i.e., it contains all 1/3-octave
bands from 100 Hz to 2500 Hz. If the spatially averaged squared sound pressures are
independent for all 1/3-octave bands, then the variance of Ln,w + CI that is due to the
diffuse field assumption can be obtained by using the results of Sections 2.2 and 2.3:

Var
(
Ln,w + CI

)
= Var

(
Ln,sum

)
=

100
ln 10

log

1 +
Var [ES′]

Ê2
S′

 (25)

=
100
ln 10

log

1 +
1

Ê2
S′

∑
j∈S′

Var
[
EB, j

] (26)

The relative variances that appear in the final expression, can be obtained by evaluating
Equation 10 for all 1/3-octave bands involved.

4. EXAMPLES

As examples of the foregoing methodology, an uncertainty assessment is performed on
two test results that are publicly available. It concerns a concrete base floor of 140 mm
thickness, which is tested in uncovered condition and with a floating screed on top. The
floor with floating screed is made up of the following layers (from top to bottom):

– 60 mm reinforced screed with density 1900 kg
m3 ;

– 0.2 mm polyethylene (PE) foil;

– 6 mm of extruded polyethylene with closed cell structure and density 30 kg
m3

(commercial product name Carro-Foam 6+);

– 60 mm insulating screed with expanded polystyrene grains and density 200 kg
m3

(commercial product name Iso-Bel 200)

– 140 mm reinforced concrete base floor.



The floors were tested in the acoustic laboratory of the Belgian Building Research
Institute (BBRI). The surface area was 260 cm × 442 cm and the receiver room had a
volume of 102.21 m3.

Fig. 1 displays the normalized impact sound pressure levels that have been measured in
1/3-octave bands on the base floor only and on the base floor with floating screed on top.
The 95 % confidence intervals, that have been obtained with Equation 17 and Equation 10
and the parameters α = 2, A = 10 m2 and V = 102.21 m3, are displayed as well. The
confidence intervals give an idea of how well the measurement results would carry over
to any other laboratory, if only the room geometry would be different.
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Figure 1: Normalized impact sound pressure levels for (a) a concrete base floor, and
(b) the same base floor with floating screed on top. Blue curves: measured (nominal,
mean) values L̂n; red curves: 95 % confidence interval ±2Std (Ln) due to the diffuse field
assumption; black curves: shifted reference curves Lref + ∆L̂ref.

Inspection of Fig. 1a allows to anticipate that the diffuse field uncertainty of the
weighted normalized impact sound pressure level Ln,w will be very low for the base floor
itself, as the measured levels exceed the shifted reference values only at high frequencies,
where the diffuse field uncertainty is very low. Inspection of Fig. 1b on the other hand
reveals that the diffuse field uncertainty of Ln,w will be higher when the floating screed is
present, because then the shifted reference values are exceeded at low frequencies, where
the diffuse field uncertainty is much higher.

This is confirmed in Table 1, where the single-number ratings and their 95 %
confidence intervals are listed. It can also be noted that the alternative weighting Ln,w +CI

yields higher uncertainties for these two examples. The maximum width of the 95 %
confidence interval is 2.6 dB, which is obtained for the unweighted linear impact sound
level of the floor with floating screed.

Finally, it would be interesting to re-compute the uncertainties for the smallest rooms
that are allowed by the standard, i.e., with a room volume V = 50 m3. The result of this
calculation is provided in Table 2. The differences between both tables indicate the loss in
accuracy that would be incurred when the diffuse-field radiation of impact sound would
be assessed in a room of 50 m3 instead of 102 m3, all other parameters such as test opening
dimensions being constant. For the Ln,w + CI rating of the floor with floating screed for
example, the width of the 95 % confidence interval would increase from 2.6 dB to 3.6 dB.



floor L̂n,w ± 2 Std
(
Ln,w

)
L̂n,w + ĈI ± 2 Std

(
Ln,w + CI

)
bare concrete 81.4 ± 0.02 dB 69.3 ± 0.1 dB
with floating screed 52.4 ± 0.6 dB 53.5 ± 1.3 dB

Table 1: Single number ratings and their uncertainties, expressed as 95 % confidence
intervals, due to the diffuse field assumption.

floor L̂n,w ± 2 Std
(
Ln,w

)
L̂n,w + ĈI ± 2 Std

(
Ln,w + CI

)
bare concrete 81.4 ± 0.02 dB 69.3 ± 0.2 dB
with floating screed 52.4 ± 0.8 dB 53.5 ± 1.8 dB

Table 2: Single number ratings and their uncertainties, expressed as 95 % confidence
intervals, due to the diffuse field assumption when the tests would have been performed
in a room with a volume of 50 m3.

5. CONCLUDING REMARKS

In this article, closed-form expressions have been derived for estimating the uncertainty
associated with the assumption that the radiated sound field in an impact sound insulation
measurement is diffuse. For the individual 1/1-octave or 1/3-octave values, Equation 17
is the main result. Evaluation of this and the related expressions reveals that, when the
absorption in the room is fixed to a reference value (e.g., 10 m2), the uncertainty depends
only on the room volume and the frequency.

For the standardized single-number ratings Ln,w and Ln,w + CI, the main results are
Equation 23 and Equation 26, respectively. Two examples have been worked out, first for
a concrete base floor and then for the same floor with a floating screed on top. Since the
performance of the bare floor is determined mainly at the high frequencies, the uncertainty
of the diffuse field assumption for the radiated sound field on the single-number ratings is
negligible. On the other hand, when a floating screed is added, the low-frequency sound
radiation determines the performance and the uncertainty of the single-number ratings
due to the diffuse field assumption becomes more important.

It should be noted that the variance expressions that have been derived here represent
only the uncertainty which is inherent in the diffuse field assumption of the radiated sound
field. In cases where this is not the dominant source of uncertainty, as for the bare concrete
floor that has been investigated here, other sources of uncertainty need be accounted for,
such as the dimensions of the test opening and the floor damping, in order to get a correct
idea of the reproducibility of the test results.
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