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ABSTRACT 

Broadband frequency energy-based industrial predictive methods are mostly 

related to Statistical Energy Analysis (SEA).  Despite well-proven efficiency in 

predicting acoustic environment in trimmed vehicles, SEA applied to the prediction 

of vibratory transfers in large systems (buildings, cruise ships and aircrafts) shows 

inherent drawbacks related to too coarse assumptions in deriving the relevant SEA 

parameters required by the modelling.  Using diffuse intensity in place of energy as 

unknowns, is shown to relax the most constraining SEA assumptions and allows 

energy-based models to be better conditioned for large size (i.e. large number of 

subsystems).  This methodology combined with the Virtual SEA method for smooth 

description of local heterogeneity, expands the range of applications of current 

energy-based methods to large and complex industrial systems as well as the 

frequency bandwidth of model validity while simplifying model construction. 
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1.  INTRODUCTION 

Statistical Energy Analysis (SEA) is providing a theoretical framework for random 

prediction of vibroacoustic environment applicable to a wide class of industrial systems 

from basic domestic appliance up to sophisticated aircraft and spacecraft. From this, SEA 

has been integrated as part of the design process in many domains of the industry. This 

need has originated several software implementing the SEA methodology, essentially 

based on the conservation of energy flow between the various subsystems involved in the 

analysis. Lyon and Maidanik original work [1] is based on a modal formulation of energy 

flow exchange, but SEA has rather evolved to a wave-transmission approach in diffuse-

field conditions, due mainly to the difficulty in relating the energy flow coefficients (the 

Coupling Loss Factors or CLF) and the modal mechanical coupling coefficients derived 

from mass and stiffness matrices of classical dynamic equation equilibrium [14]. 
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SEA theory is based on a weak-coupling assumption between subsystems, which is 

most of the time satisfied in the high frequency regime (i.e. for short wavelengths 

propagating in any subsystem). With this assumption, a subsystem is only depending on 

its local modes and may be easily computed using standard analytical solutions for a given 

choice of typology in describing the subsystem as a beam, a plate or a more complex 

curved-shell. 

Coupling subsystems together for deriving the CLF cannot be easily done within the 

classical modal theory or at the price of introducing new set of assumptions. For any 

dynamic problem based on substructuration, the domain of analysis has to be split into 

parts, each part being described by modal series of pre-computed modes.  

The behavior of the full system is obtained by matrix assembly of the various 

subsystem sub-matrices. The assembly method is heavily depending on the choice of 

boundary conditions allocated to individual subsystems to extract their modal behavior: 

free, clamped, mix of the latter or adding some additional degrees of freedom as in the 

Craig-Bampton assembly method [2]. Latter choices condition the convergence of the 

final modal-series matrix to a solution. The modal coupling loss factors between pair of 

modal oscillators taken between two different subsystems is entirely dependent on 

assumed boundary conditions and only the assembled matrix has a physical meaning. 

Many references can be found that have discussed about possible ways of retrieving CLF 

for modal coupling but none has evolved to a general applicable light calculation method 

[9][11][1211]. 

 

2.  CLASSICAL ANALYTICAL SEA DERIVATION OF CLF BETWEEN 

CONTINUOUS AND CONTIGUOUS SUBSYSTEMS 

As proposed by Lyon [2], the CLF are simply obtained between two continuous 

domains using both weak-coupling and diffuse-field assumptions. 

The field diffusion (in high frequency range) allows replacing the modal representation 

of the vibratory field by a set of uncorrelated plane waves within the emitter subsystem. 

The weak-coupling assumption guarantees the energy that flows into the receiver through 

a junction (point, line, area...) is not feed-backed into the emitter as correlated energy. 

On one hand, the power flower E RP   between the emitter and the receiver subsystems, 

due a diffuse total energy state EE , within the emitter in a frequency band centered around 

the radian frequency  , is simply expressed as function of energy: 

E R ER EP E    

On the other hand, the power flow may be obtained from the transmission coefficient 

by introducing the diffuse field intensity in the emitter, dI  that crosses the junction of 

size 
jL : 

E R d jP I L 
  

From two previous equations and given the ratio of diffuse intensity over total energy 

in the emitter medium, it comes: 
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Group speed is only different from phase-wave speed for dispersive waves (reduced 

to flexural structural waves in standard SEA applications):  
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If the two coupled subsystems are both driven by a random force, both forces being 

uncorrelated, the net power flow at their interface under weak-coupling assumption is 

given by: 

 12 12 1 21 2P E E      (2) 

Using the wave transmission coefficient provided by (1), independent of damping loss 

factor, leads obviously to inconsistency when the transmission loss is large (i.e. near to 

1). For 1  , the energy sent by 1 to 2 is sent back to 1 in an amount that cannot be 

neglected and not fulfilling the weak-coupling criterion. 

Previous considerations explain why regular SEA method is more suitable for solving 

fluid-structure interactions than structure borne problems. Transmission loss coefficient 

between two cavities separated by a light panel is generally of around 0.01 or lower; 

weak-coupling is implicitly satisfied and equation (2) applies. In mechanical coupling the 

transmission loss is most often spread between 1 and 0.1, obviously not a weak-coupling 

case and some bias is expected from actual behavior when chaining similar subsystems 

and predicting the transfer from (2). 

 

3.  VIRTUAL SEA MODELING FOR LOW AND MID-FREQUENCIES  

By applying Analytical SEA (ASEA) to the modelling of mechanical transfers in car 

body-in-white (BIW) [8][13], it was observed that ASEA CLF were deviating from 

measurements in the mid-frequency range. SEA parameters were extracted from test data 

and inverse SEA test method, also called the Power Injection Method (PIM) and 

compared to predicted ones. 

Outputs from analytical models were also showing high sensitivity to the way BIW or 

chassis were partitioned into subsystems. The Virtual SEA (VSEA) method has been then 

introduced from 2000th’s to determine SEA parameters from Finite Element models 

(FEM) and was proved to be an efficient way of building truly predictive mid-frequency 

energy models of car bodies [13]. 

In VSEA, SEA models are created from FEM by processing Frequency Response 

Functions (FRF) computed by modal synthesis using the FEM global modes using an 

adaptation of PIM method to specificity of FEM outputs. The major benefit of VSEA is 

the auto-partition technique that identifies the subsystem domain extension as a function 

of frequency in a given frequency band of analysis, to guarantee two subsystems are 

effectively weakly coupled for equation (2) to be applicable. 

VSEA provides a compressed model of the FEM statistical dynamics up to the 

frequency limit of modal extraction (1/6 of the wavelength) under the SEA format (i.e. a 

frequency and size dependent loss factor matrix, coupling energy and power). 



 

 

VSEA is also a handy tool to compare ASEA models and their related FEM 

representations. 

The following example in Figure 1 shows a “box” FEM model and Figure 2 the 

resulting SEA model post-processed by VSEA beside the related regular ASEA model. 

The FEM FRF from which is identified the VSEA model were synthesized with a 

global modal DLF of 0.01. The “direct” junction transmission coefficients range between 

0.2 and 0.7 whether adjacent plates are orthogonal or coplanar (analytical calculation). 

When applying a force on the first transverse panel, the evolution of the VSEA lateral 

panel velocities is given in Figure 3 and the related velocities computed by the analytical 

SEA model are given in Figure 4. We note a progressive divergence of levels with 

distance to source given by the analytical model compared to FEM/VSEA result. This 

divergence is also observed on transverse panel levels. 

The depredation of the analytical modelling comes from the inadequacy of equation 

(2) in expressing the power flow exchanged between panels due to the strength of 

coupling in the concerned frequency region of interest. 

This is why VSEA has been widely used in place of ASEA for simulating mid-

frequency behavior of various industrial systems by embedding both structure and 

acoustic-borne sound propagation within the same model.  

Nevertheless, there is a need for some kind of analytical modelling for solving large 

systems such as aircraft or ship. The bandwidth of their vibrational responses is limited 

due to the decrease of FEM upper frequency limit with model size. ASEA models are 

biased for strong coupling and serial path propagation over low and mid-frequencies as 

transmission coefficients of structural elements stay nearly constant with frequency 

within this frequency range. 
 

 

Figure 1: FEM box model: Elementary panel 2 m x 2 m in steel 1 cm thick. Mesh size 

30 mm 

 

Figure 2: MS-VSEA and Analytical SEA box models 



 

 

 

Figure 3: Evolution of lateral-plate velocity with distance from source (first transverse 

plate) in the VSEA model 

 

 

Figure 4: Evolution of lateral-plate velocity with distance from source (first transverse 

plate) in the analytical SEA model 

 

4.  INTENSITY METHOD FOR SOLVING STRONG-COUPLING CASE 

Strong coupling is the most common case when modelling a structural industrial 

system as all parts have similar materials and cross-sections as in aircrafts, ships or cars. 

Applying formula (1) to mechanical junctions in an ASEA model, leads to a bias in 

predicted CLF and error cumulates when chaining these subsystems as shown in previous 

box example. 

From energy flow analysis [3][4][6] and author work [5], an alternate expression of 

the conservation of energy exists. This expression uses diffuse intensities at subsystem 

boundary as unknowns in place of the subsystem energy. 

The net power flow that crosses a junction connecting two subsystems can be split into 

two contributions: the power that flows out of the subsystem, with positive sign referring 

to the outward normal at subsystem boundary and the power that flows in, with negative 

sign. 



 

 

The net power flow expresses then at boundary j as:  j j j jP I I L    and 
jI  , 

jI   are 

called the circulating intensities for differencing them from net intensity, the standard 

measured quantity. A subsystem may have several boundaries and from [5] it is shown 

that circular intensities at boundary j are related to other intensities at other boundaries i 

by the following expression: 
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where 
ijd  is the mean free run distance between two boundaries and 

ij  the geometrical 

divergence coefficient depending on subsystem shape. 

 

For a non-dissipative junction connecting two subsystems 1 and 2, the net power flow 

crossing it depends on circular intensity balance at boundary and next two relationships 

express the conservation of intensity as function of the diffuse wave-transmission 

coefficient,  :  
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From equations (3) and (4), circulating intensities at boundaries of a network of 

subsystems can be linked mathematically in a matrix form to injected power in the system 

for solving the intensity problem, leading to the Statistical Intensity Analysis (SIA) 

method. 

SIA uses more unknowns than SEA, at least two circulating intensities per boundary 

(or connection) plus a certain number of free boundaries where either perfect reflection 

or absorption can be stated. Unlike SEA, boundaries can be made dissipative when 

needed. 

It also solves the problematic of weak coupling as equation (4) does not involve any 

restriction to the value of  . Best, assuming 1  , equations (4) simplify and lead to 

the regular SEA expression (2), SEA being proved to be included within the SIA 

theoretical framework. 

Energy density within subsystems can be retrieved from boundary intensities after 

solve as their expression is found given by: 

   
1

( ) ( )d g i i

iL

e e d F k I I
L

    x x x l  

F is a continuous function obtained by integrating the shape function mapping the 

subsystem domain defined by series of boundaries iB .  

The shape function describes the attenuation of circulating intensities across the 

subsystem. It depends on characteristic subsystem length, l , group wavenumber 
gk  and 

damping loss factor  . 

SIA shares common assumptions with SEA: each subsystem must be resonant within 

the frequency band of analysis which means the structural wavelength should be shorter 

than the subsystem characteristic size. 
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To compare the virtue of SIA against VSEA and ASEA, a two-plate subsystem case 

is now introduced: the two plates are made of aluminum, their thickness is 2 mm with 

dimensions 1 m x 1 m and they are connected by a 1 m-line junction. The diffuse 

transmission coefficient is equal to 0.28 as analytically computed by SEA+ software [15]. 

 

The plate models are built using ASEA and VSEA modeling methods, the latter relying 

on a FEMAP FEM model of which modes were extracted up to 9000 Hz and modal 

amplitudes stored at 143 reference nodes. FEM modal amplitude file is submitted to the 

SEAVirt solver of SEA+ which performs the FRF computation between nodes and 

identifies SEA parameters from FRF using PIM method. The output of SEAVirt provides 

automatically a VSEA model of the two-plate system able to predict within 0.5 to 1 dB 

of uncertainty the plate transfer energies. 

 

The three models are respectively solved for a 3-Watts power applied in subsystem 1 

and for three different values of modal DLF (same for both plates), respectively 0.1%, 

1% and 10%.  

Comparisons are made on ratio 12 11/P E  to emphasize the differences between the 

three models vs. DLF as differences in energies are small as expected for such a simple 

model. 12P  is the net power flow crossing the junction and 11E  the energy of the emitter 

subsystem. 
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Figure 5: 2-Plate test case modeled by VSEA, ASEA and SIA 

 

Figure 6 and Figure 7 show outputs from the three models for the three DLF values. 

SIA is closer to VSEA/FEM output over mid-frequency compared to ASEA.  

This offset explains why chaining strongly-coupled subsystems leads to cumulative 

errors. SIA offers a better conditioned method with clear separation between damping 

and transmission effects as the coupling between two subsystems at common boundary 

depends only on the transmission coefficient, independent of damping.  

This is not the case of the ASEA coupling as the CLF is made independent of damping 

adding an extra assumption of weak coupling not always true. 
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Figure 6: 2-Plate test case Ratio /P E  computed by SIA, VSEA and ASEA models for 

DLF value of 0.1% (left) and 1% (right) 

 

 

Figure 7: 2-Plate test case Ratio /P E  computed by SIA, VSEA and ASEA models for 

DLF value of 10% 

 

5.  CONCLUSIONS 

Statistical Intensity Analysis or SIA is suitable to the analysis of structural 

transmission in case of strong mechanical coupling. SIA intensity equilibrium provides a 

wider scope than analytical SEA. The classical SEA specific power balance expression 

(as function of energy difference) is shown to be a specific weak coupling case of the SIA 

theory. 

SIA may then address modeling larger systems than SEA, made of many similar parts 

chained together like ship hull or full-aircraft fuselage. It nevertheless needs larger 

number of unknowns for solving then SEA (typically 8 intensities for QUAD SIA 

elements).  

Current work is to hybridize SIA, VSEA and ASEA in a global SEA network model 

for preserving SEA fast solve capability while improving robustness of structure-borne 

increasing the scope of analytical calculation. 
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