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ABSTRACT 
The reduction of structural vibrations to minimize the emission of airborne noise, is 
a commonly known engineering issue. Beside passive methods, active methods 
known as Active Vibration Control (AVC) or Active Structural Acoustic Control 
(ASAC) become more important. Their advantage is the use of lower mass in 
comparison to passive methods. The active control is based on the assumption of 
linear system dynamics, which is not always sufficient for real systems. In this paper 
an inertial shaker reduces vibrations of a single degree of freedom system. The 
parameters for the passive part are determined analytically and numerically. A PD 
controller is designed for the active part. The combined system is simulated. The 
total absorption is compared to the passive absorber. The simulation shows good 
performance of the combined system for the vibration as well as for the relative 
movement between the absorber and the main mass. 
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1. INTRODUCTION 
The suppression of vibrations has different reasons, for instance the improvement of 
stability of materials and products, reduction of noise or improvement of working 
conditions. Numerous methods to reduce vibrations are developed over the years. The 
first method were passive dynamic vibration absorber, developed by H. Frahm 1909 [1]. 
Furthermore, active methods get popular, for example the usage of piezo elements on 
different main structures, like cantilever beams [2] or cantilever plates [3]. The research 
for active vibration control of plates with piezo elements is reviewed in [4]. Beside piezo 
elements, voice coil devices are used for vibration reduction in different forms, with force 
application to the main structure [5,6] or to a special form of the absorber [7]. 
 
This paper deals with a simplified situation, see Figure 1.1. The main structure is regarded 
as a single mass 𝑚  which is supported by four springs with overall stiffness 𝑘  to two 
stiff crossbeams. A modal exciter generates an excitation force 𝐹 . An inertial shaker with 
mass 𝑚  acts as active dynamic vibration absorber (DVA). It consists of a permanent 
magnet which is connected by two plate springs to the stiff housing, see Figure 1.2. A 
current-carrying coil generates an electromagnetic force between housing and permanent 
magnet.  



 

 
Figure 1.1: Experimental setup with inertial shaker 

 

 
Figure 1.2: DVA without housing and upper spring in sectional view 
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2. SYSTEM MODEL OF ACTIVE DUAL MASS SYSTEM 
 
Figure 2.1 shows the electro-mechanical model. The system consists of the mass of the 
main structure 𝑚   and the mass 𝑚  of the dynamic vibration absorber (DVA). Both are 
connected by the spring with stiffness  𝑘  and the damper with coefficient 𝑏 . The 
external force 𝐹  acts on the main mass. The main mass is supported by the spring with 
stiffness  𝑘  and the damper with coefficient 𝑏 . The coil is modelled by resistance 𝑅 and 
inductance 𝐿. The converter constant 𝜃 couples the electric circuit with the mechanic dual 
mass system. The voltage 𝑈 is applied between the electrical contacts at the coil.  

 
Figure 2.1: System model 

 
 

Table 1.1: Physical system parameters 
 

Name Parameter Value Unit 
main mass 𝑚   kg 
main stiffness 𝑘  200 kN/m 
main damping 𝑏   Ns/m 
DVA mass 𝑚   kg 
DVA stiffness 𝑘   kN/m 
DVA damping 𝑏   Ns/m 
converter constant 𝜃 179 N/A 
coil resistance 𝑅 10  
coil inductance 𝐿 0.4482 mAs 
excitation force amplitude 𝐹   N 

 
 



2.2 Dimensionless quantities 
 
We introduce the damping ratios 

𝐷
𝑏

2 𝑘 𝑚
,        𝑖 1,2 (1) 

and the angular frequencies  

𝜔 𝑘 𝑚⁄ ,        𝑖 1,2 . 
 

(2) 

  
Dimensionless quantities lead to simplified equations of motion. Therefore we choose the 

reference frequency 𝜔 𝜔 𝑘 𝑚⁄  and the reference mass 𝑚 𝑚 . We also 
introduce the reference displacement 𝑥 𝐹 /𝑘 , given by the static displacement of the 
main mass due to the excitation force amplitude 𝐹  . 
Related (dimensionless) quantities are marked by a tilde ~ on top. We define the 
dimensionless time  

�̃� 𝜔 𝑡 (3) 
and the related frequency and excitation frequency  

 𝜔 𝜔 /𝜔 , Ω Ω/𝜔 . (4) 
The motion related to the reference motion and their derivatives with respect to the 
dimensionless time are 
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The excitation force is related to its amplitude 

𝐹
𝐹

𝑘 𝑥
 (6) 

 
We also introduce the following electrical quantities, the dimensionless coil current 

𝐼
𝜃𝐼

𝑘 𝑥
 (7) 

 
the dimensionless coil voltage 

𝑈
𝜃𝑈

𝑅 𝑘 𝑥
 (8) 

 
the dimensionless converter constant  

𝜃
𝜃 𝜔
𝑅 𝑘

 (9) 

 
and the dimensionless time constant of the coil 

�̃� 𝜏𝜔
𝐿
𝑅

𝜔  (10) 

 
 
 
 
 
 



2.2 State-space model  
 
The equations of motion of the electro-mechanical system can be written in state-space 
form  

𝒙 𝑨𝒙 𝑩𝒖 
𝒚 𝑪𝒙 𝑫𝒖 

(11) 

with the state vector  
𝒙 𝑥 𝑥 𝑥 𝑥 𝐼  (12) 

 
the system matrix 
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the input matrix 

𝑩
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⎢
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⎢
⎡

0 0
0 0
1 0

0 0
0 1/�̃�⎦

⎥
⎥
⎥
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 (14) 

and the input vector 

𝒖 𝐹
𝑈

. (15) 

As elements of the output vector 𝒚 the displacement 𝑥  and the elongation of the DVA 
spring 𝑥 𝑥  are chosen. Therefore we get the observer matrix 
 

𝑪 1 0 0 0 0
1 1 0 0 0

 (16) 

and the direct input-output matrix  

𝑫 0 0
0 0

. (17) 

 
Table 2.1 contains all parameters of the state space model. The dimensionless coil time 
constant and converter constant are calculated from Equation (9), (10) with the measured 
parameters from Table 1.1 and the measured natural frequency 𝜔  = 251.3 rad/s. The 
DVA parameters 𝐷  and 𝜔  are optimized in Chapter 3.  
 

Table 2.1: Dimensionless system parameters 
Parameter Value  

𝐷  0.005 measured 
𝐷    
𝑚  0.1 estimated 
𝜔    
𝜃 4.0222 measured 
�̃� 0.0118 measured 

 



 
3. PASSIVE DYNAMIC VIBRATION ABSORBER DESIGN 
 
We design the passive DVA. This means that the electrical state vanishes 𝐼 ≡ 0. In a 
first design we assume that 𝑚 ≪ 1 and 𝐷 ≅ 0. Following the analytic approach of [8] 
then leads to the optimal natural angular frequency 𝜔 0.8222  and the optimal 
damping ratio 𝐷 0.0911, compare [9]. 
For the second design we use realistic values of 𝑚 0.1 and 𝐷 0.005. A numeric 
optimization following the method of  [10] results in the optimal values of the natural 
angular frequency 𝜔 0.907  and the damping ratio 𝐷 0.0928. Details are given 
in [9]. 
 

Table 3.1: Optimal passive DVA system parameters [9] 
Name Parameter Analytical opt. Numerical opt. 
damping ratio 𝐷  ≅ 0 0.005 
mass 𝑚  ≪ 1 0.1 
damping ratio 𝐷  0.0911 0.0928 
natural angular frequency 𝜔  0.8222 0.907   

 
 
4 CONTROL DESIGN 
 
4.1 Model of active dynamic vibration absorber 
 
The active dynamic vibration absorber is modelled in Simulink. Therefore the state 
space model (11) is introduced by the block “coil-two-mass-system”.  Figure 4.1 shows 
the control loop with the variable 𝑥  to be controlled by the transfer function 𝐺 .  
 

 
Figure 4.1: Closed loop system – SIMULINK model 

 
An amplifier connected to the coil contacts supplies the voltage U. This leads to current 
I and due to the coil resistance R to high energy dissipation in the electrical part of the 
system. Figure 4.2 shows the open loop disturbance and control frequency response. 
Due to the high electrical damping only one resonance peak appears. 
 
 



 
Figure 4.2: Open loop disturbance 𝑋 𝑠 /𝐹  (left) and control 𝑋 𝑠 /𝑈 𝑠  (right) 

frequency response 
 
 
4.2 PD Controller 
 
We introduce a PD controller with the transfer function in the form 
 

𝐺 𝑠
𝑈 𝑠

𝑋 𝑠

𝐾 1 𝑇 𝑠 𝑇 𝑠
1 𝑇 𝑠

 (18) 

The controller parameters  
 

𝐾   1000, 𝑇 0.001 and 𝑇 0.01 (19) 
 
are determined by a heuristic frequency-curve design method [11]. This PD controller 
fulfils the criterions for stability, controllability and observability for the state space 
system, see [9]. Figure 4.3 shows the disturbance transfer function 𝑋 𝑠 /𝐹  . The 
resonance is greatly reduced. 

 
 



 
Figure 4.3: Closed loop disturbance 𝑋 𝑠 /𝐹  (left) and control 𝑋 𝑠 /𝑈 𝑠  (right) 

frequency response with PD-control 
 
5. RESULTS 
 
Figure 5.1 shows the normalized displacement 𝑥1 of the main mass 𝑚1 excited by the 
external force 𝐹𝑒. The single degree of freedom (DOF) main system with no DVA (blue 
line) shows a weakly damped resonance region around 𝛺 𝛺/𝜔1 1. Adding a DVA 
results in a two DOF system with two resonances. The amplitude peak of the main 
system is greatly reduced, but we observe a slight amplification of the amplitude for 
frequencies below and above the resonance region. A numeric optimisation delivers 
DVA parameter which result in a further reduction of the maximum amplitude by 
approx. 1 dB, see Figure 5.1b. Adding a coil to the two mass system brings an 
additional (electric) state variable. Controlling the current by the PD-controller results in 
a drastically better system response in the whole frequency above 𝛺 10^-1.6=0.025, 
see purple curve in Figure 5.1a. 

Normalized frequency Ω 



 
Figure 5.1: a) Frequency response 𝑥 /𝐹  b) enlargement, adapted from [9] 

 
 
6. CONCLUSION 
 
This study shows good vibration reduction of a single mass system by adding a DVA. 
Optimisation of two parameters (damping ratio and eigenfrequency) of the DVA results 
in a good reduction of the maximum of the response curve. But this deteriorates slightly 
the vibration outside the resonance region. The controlled active DVA leads to a much 
better vibration reduction. These results have to be considered carefully, because they 
are calculated with a linear system model. Nonlinear system behaviour (springs, 
damper, mechanical and electrical limit stops) and sensor noise are not considered.  
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