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ABSTRACT

Phononic crystals are periodic structures wherein elastic waves propagate. Due
to Bragg scattering, periodicity creates frequency bands where waves become
evanescent and standing wave modes cannot build up (band gaps). This property
can be used for vibration and noise control. The plane wave expansion (PWE)
method is the most commonly used method to obtain the dispersion diagram from
the periodic cell properties by imposing the Bloch-Floquet periodicity (infinite
structure behavior). However, it does not compute the forced response of a finite
structure. Spectral elements are an efficient way to represent analytically the
dynamic stiffness matrix of a periodic cell. However, spectral elements are available
only for uniform or tapered cells, or combinations of those. Otherwise, a finite
element model of the cell can be used. In this work, a modeling technique that can
be used to compute the band diagram and the forced response of one-dimensional
phononic crystals with spatially varying elastic and geometrical properties is
presented. The technique consists of transforming the equations of motion, a
boundary value problem, into a spectral (harmonic) spatial domain initial value
problem in state-space form. By transforming the state variables to mechanical
impedance variables produces a Riccati equation, which can be numerically
integrated starting from a waveguide end, as the impedance value can be known
from the boundary conditions. Solving the Riccati equation allows computing
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the transfer matrix and, from it, the dynamic stiffness matrix. This formulation
can be used for one-dimensional elastic waveguides such as rods, acoustic ducts,
beams, and Levy plates. Numerical examples of rods are presented. The method is
computationally efficient and presents good convergence properties. In this work
the shape of a periodic rod with varying cross-sectional area is designed for a low
frequency and broad first band gap and the forced response is computed using the
state space formulation. Experimental results are also presented.

Keywords: Periodic structure, band gap, phononic crystal,state-space,Riccati
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1. INTRODUCTION

Phononic crystals are periodic structures which exhibit band gaps in their dispersion
diagram due to Bragg scattering [1, 2]. In this work, we are interested in their use for
vibration and sound attenuation [3, 4]. These elastic systems are usually modeled as
boundary value problems in the spatial domain and as initial value problems in the time
domain. The resulting equations of motion can be solved by analytical or numerical
approaches [5]. The dispersion diagrams can be obtained from the homogeneous
equations of motion applying the Bloch-Floquet periodic condition on the displacement
field [6]. The plane wave expansion (PWE) method is the most widely used. It expresses
the periodic material and geometrical properties as a spatial domain Fourier series
expansion [7]. An alternative analytical technique consists of using a spectral element
model.

For spatially varying properties, SEM elements exist only for simple cases, such as
linearly/tapered or exponential distributions [8, 9]. For arbitrarily shaped waveguides, a
stepped SEM can be used, but this approach can present numerical issues [10]. In this
work, the second order partial differential elastodynamic equation of an arbitrarily shaped
rod is written as a first order system of equations. This space-state formulation transforms
the boundary value problem into an initial value problem [11]. However, as only the
relation between the forces and displacements is known in a boundary value problem,
the system of equations is rewritten in terms of the mechanical impedance [12]. The
transformed equation is shown to be a Riccati differential equation in the spatial domain
with varying properties. The impedance is known in a boundary value problem and,
therefore, the Riccati equation can be solved. This method originally used to compute the
mechanical impedance of a beam with varying thickness [13].

Given the impedance at the two ends of a periodic rod cell, this work shows how
to obtain the transfer matrix and the dynamic stiffness matrix of the rod element with
arbitrary shape. This can be interpreted as a spectral element with arbitrary shape. This
spectral element is used to compute the forced response of arbitrarily shaped phononic
crystal rods. The shape of the rod cell can be optimized using the Fourier coefficients
in the PWE method, while the forced response of a structure composed of the periodic
rod cells can be computed with the proposed state-space/Riccati approach. The proposed
method can be extended to treat many types of one-dimensional elastic waveguides, such
as beams, acoustic ducts, and Levy plates [14].
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2. FORMULATION

In this section the plane wave expansion method is applied to a simple rod with varying
cross-sectional area expanded in Fourier series. The PWE can be found in the literature,
but we present it for this simple case aiming at introducing the topic to the noise control
engineering community and facilitating the involvement of neophytes with the phononic
crystal concept.

2.2.1. Plane wave expansion for rods

The wave equation for an elastic rod with varying cross-sectional area can be written
as:

∂

∂x

(
ES (x)

∂u(x, t)
∂x

)
= ρS (x)

∂2u(x, t)
∂t2 (1)

Here the Young’s modulus E and the specific mass ρ are assumed constant, but they might
also vary along the rod. Thus, the dependence upon x is expressed in S and u and omitted
in E and ρ.

Applying the Fourier transform in Equation 1 yields:

∂

∂x

(
ES (x)

∂u(x, ω)
∂x

)
= −ω2ρS (x)u(x, ω) (2)

From the Bloch-Floquet theorem, the Bloch wave function for the displacement u(x, ω) is
given by:

u(x, ω) = e jkxuk(x, ω) (3)

where the uk(x, ω) is the amplitude function of a wave in one cell, or Bloch wave
amplitude, dependent of the wave number k. Expanding it as a Fourier series in the
reciprocal space (wavenumber domain) of the dimension x results in:

u(x, ω) = e jkx
+∞∑

n=−∞

ûk(g, ω)e jgx =

+∞∑
n=−∞

ûk(g, ω)e j(k+g)x (4)

where g = 2πn/a, a is the cell length and n ∈ Z. The expansion of the cross sectional area
as a Fourier series results in:

S (x) =

+∞∑
n̄=−∞

Ŝ (ḡ)e jḡx (5)

where ḡ = 2πn̄/a with n̄ ∈ Z.
The term on the right side of Equation 2 can be rewritten using Equations. 4 and 5:

ω2ρS (x)u(x, ω) =

+∞∑
n=−∞

+∞∑
n̄=−∞

ω2ρŜ (ḡ)ûk(g, ω)e j(k+g+ḡ)x (6)

Denoting ğ = ḡ + g and substituting in Equation 6 yields:

ω2ρS (x)u(x, ω) =

+∞∑
n=−∞

+∞∑
n̆=−∞

ω2ρŜ (ğ − g)ûk(g, ω)e j(k+ğ)x (7)



where ğ = 2πn̆/a with n̆ ∈ Z. Similarly, the left term can be obtained as

∂

∂x

[
ES (x)

∂u(x, ω)
∂x

]
= −

+∞∑
g=−∞

+∞∑
ğ=−∞

EŜ (ğ − g)ûk(g, ω)(k + g)(k + ğ)e j(k+ğ)x (8)

Hence, Equation 2 may be rewritten as: +∞∑
g=−∞

+∞∑
ğ=−∞

EŜ (ğ − g)ûk(g, ω)(k + g)(k + ğ)e jğx

−

+∞∑
g=−∞

+∞∑
ğ=−∞

ω2ρŜ (ğ − g)ûk(g, ω)e jğx

 e jkx = 0

(9)

Multiplying Equation 9 by e− jḡx and integrating over the unit-cell length for e− jkx , 0
yields:

+∞∑
g=−∞

+∞∑
ğ=−∞

EŜ (ğ − g)ûk(g, ω)(k + g)(k + ğ)
1
h

∫
e j(ğ−ḡ)xdx

−

+∞∑
g=−∞

+∞∑
ğ=−∞

ω2ρŜ (ğ − g)ûk(g, ω)
1
h

∫
e j(ğ−ḡ)xdx = 0

(10)

Recalling that
1
h

∫
e j(ğ−ḡ)xdx = δğḡ (11)

where δğḡ is the Kronecker delta, which is non-zero only when ğ = ḡ. Equation 10 can be
simplified and rearranged as:

+∞∑
g=−∞

ω2ρŜ (ḡ − g)ûk(g, ω) =

+∞∑
g=−∞

EŜ (ḡ − g)(k + g)(k + ḡ)ûk(g, ω) (12)

Truncating the summation with g, ḡ = [−N,N] results in 2N + 1 coefficients and
Equation 12 can be written as:

ω2
+N∑

g=−N

ρŜ (ḡ − g)ûk(g, ω) =

+N∑
g=−N

EŜ (ḡ − g)(k + g)(k + ḡ)ûk(g, ω) (13)

Equation 13 can be written in matrix form as:

A(k)U(g) = ω2B(k)U(g) (14)

where U(g) = uk(g, ω) . The elements of the (2N + 1) × (2N + 1) matrices A and B are
defined as

Ai j(k) = EŜ (ḡi − g j)(k + g j)(k + ḡi)

Bi j(k) = ρŜ (ḡi − g j)
(15)

where ḡi = 2πi/a and g j = 2π j/a with i, j = [−N,N]. Equation 14 represents the
generalized eigenvalue problem that should be solved for wave numbers within the
irreducible Brillouin zone ka/π = [0, 1]. When the wavenumber is zero or π the term
eikx has a unitary magnitude and thus there is no propagation. In this case, it can be
shown that k has an imaginary part, which implies that waves decay along x. Such



non-propagating waves are called evanescent waves. In the frequency ranges where this
happens there is no propagation and, therefore, there can be no standing waves and, thus,
no vibration modes. Furthermore, because of the decay, vibration will be attenuated
along x in this frequency range, denominated band gap or stop band. The easiest way to
visualize band gaps is plotting k(ω) or ω(k), which is referred to as dispersion diagram.

2.2.2. Space state formulation for rods

In this section the elastodynamic equation in the frequency domain is written in state-
space form. A coordinate transformation yields a Riccati differential equation, which can
be solved given the boundary conditions. It is shown how to derive the transfer matrix and
the dynamic stiffness matrix of an arbitrarily shaped rod element. Knowing the expression
for the internal longitudinal force in a rod, q̂(x) = ES (x)∂û(x)

∂x , Equation 2 can be written
as a system of first order partial differential equation, i.e. the state space form:

∂q̂(x)
∂x

= −ρS (x)ω2û(x)
∂û(x)
∂x

=
q̂(x)

EA(x)
(16)

which can be written in matrix form as:

∂ p̂
∂x

= H p̂ (17)

with the state p̂(x) := p̂(x, ω) and the system matrix H(x, ω) given by:

p̂(x) =

[
û(x)
q̂(x)

]
and H(x, ω) =

[
H11 H12

H21 H22

]
=

 0
1

ES (x)
−ρS (x)ω2 0

 (18)

It is straightforward to solve Equation 17 numerically for any type of variation of
the parameters along x. However, the initial state cannot be known, as the boundary
condition is either of the force (Neumann) the displacement (Dirichlet), or mixed
(force/displacement relation); the other variable of the state being unknown. To
overcome this issue, one can rewrite the problem in terms of the mechanical impedance
ẑ(x), which is a relation between the state variables. For any boundary condition, the
relation between the state variables and, hence, the impedance is known. Therefore, a
coordinate transformation is necessary [13]:

q̂(x) = iωẑ(x)û(x) (19)

Substituting Equation 19 in Equation 17, one obtains the following set of equations:

∂û(x)
∂x

= H11û(x) + H12q̂(x) and iω
∂ẑ(x)û(x)

∂x
= H21û(x) + H22q̂(x) (20)

which lead to:

iω
(
∂ẑ(x)
∂x

û(x) + ẑ(x)H11û(x) + ẑ(x)H12iωẑû(x)
)

= H21û(x) + H22iωẑ(x)û(x) (21)

Since û(x) cannot be identically zero, one finally obtains the following Riccati type
equation:

∂ẑ(x)
∂x

+ ẑ(x)H11 −H22ẑ(x) + iωẑ(x)H12ẑ(x) = (iω)−1H21 (22)



For this equation, an initial condition ẑ(0) = 0 can be used for a free end, where q̂0 = 0
and û0 is unknown, but not zero.

After evaluating ẑ(x = L) by integrating the Riccati equation, one can consider
a unitary external force q̂(x = L) = 1. Equation 19 can be used to compute the
displacement. With the state at x = L known, and using it as a initial condition in
Equation 17, the state at x = 0 is obtained by integration of the state equations. Then, the
full state at both ends allows computing the transfer matrix, since it relates the state at the
two ends of the free-free finite rod.

p̂(L) = T̂ (ω) p̂(0) (23)

where T̂ is the [2 × 2] transfer matrix. Applying the boundary conditions q̂(x = L) = 1
and q̂(x = 0) = 0 leads to {

ûL

1

}
=

[
T11 T12

T21 T22

] {
û0

0

}
(24)

Solving this algebraic system of equations leads toT11 = ûL/û0

T21 = û−1
0

(25)

In order to obtain T12 and T22, the initial condition is applied at the other end, x = L and
the impedance is integrated in the opposite direction up to x = 0. Repeating the procedure
done earlier, we have p̂(0) and p̂(L). Applying the new boundary conditions: q̂(x = L) =

and q̂(x = 0) = 1, the transfer matrix relation becomes:{
ûL

0

}
=

[
T11 T12

T21 T22

] {
û0

1

}
(26)

Without loss of generality we consider now a rod symmetric with respect to its center
x = L/2. In this case we can write T12 and T22 in terms of T11 andT21:T12 = (T 2

11 − 1)T−1
21

T22 = T11
(27)

The transfer matrix and, consequently, the dynamic stiffness matrix, are obtained. The
stiffness matrix can be written as:[

K11 K12

K21 K22

]
=

[
T−1

12 T11 −T−1
12

T21 − T22T−1
12 T11 T22T−1

12

]
(28)

For a periodic rod, the periodic cell dynamic stiffness matrix is computed as explained
above, and a global dynamic stiffness matrix is assembled for a given number of rod
cells. With the global matrix the forced responses can be easily computed. The proposed
method can be seen as a method to derive the spectral element matrix of a structure with
arbitrarily varying properties along its length.



3. NUMERICAL RESULTS

To illustrate the proposed method, we treat a simple example of a rod consisting
of three identical cells along its length. The axisymmetric rod cell is shaped using
semicircles of radius rc = a/4 and a minimum radius of rmin = 0.01m as shown in Figure
1. The material and geometrical properties are shown in Table 1.

Given the expression of the radius along the cell length x = [−a/2, a/2]:

r(x) = rmin + rc −
√

r2
c − (2rc − x)2, −a/2 < x − a/4

r(x) = rmin + rc +
√

r2
c − x2, −a/4 < x < a/4

r(x) = rmin + rc −
√

r2
c − (x − 2rc)2, a/4 < x < a/2

(29)

one can compute the cross-sectional area as a function of position x.

Figure 1: Unit rod cell geometry (axisymmetric).

Table 1: Material and geometrical properties fo the rod

Material property Symbol Value Units
Young’s modulus E 81.5 × 109 N/m2

Mass density ρ 8600 kg/m3

Cell length a 0.06 m
Minimum radius rmin 0.008 m

Profile radius rc a/4 m

Given the cross-sectional area as a function of x one can obtain the Fourier series
coefficients using the Discrete Fourier Transform (DFT). Here we have used 7397 points
along x. Given that the shape is symmetrical with respect to x = 0, i.e. an even
function, the Fourier series coefficients are real and the Fourier series is also an even
function. Therefore only half the Fourier series coefficients are necessary to define the
cross-sectional area.



Applying the PWE method exposed in Section 2.1 the dispersion diagram shown in
Figure 2 is obtained. A large band gap opens at 8950 Hz. It closes at 48 kHz. The
PWE method is a straightforward way to obtain the dispersion diagram. Otherwise, the
eigenvalues of the transfer matrix also give the wavenumbers (as a consequence of the
Bloch-Floquet theorem). The latter give not only the real part of the wavenumber, but
also its imaginary part. A dispersion diagram with the real part in the positive axis and
the imaginary part in the negative axis (standard way of depicting the dispersion diagram)
obtained from the eigenvalues of the transfer matrix obtained using the state-space/Riccati
method of Section 2.2 is shown for a larger frequency range in Figure 3.
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Figure 2: Dispersion diagram computed using the PWE method.
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Figure 3: Dispersion diagram computed using the eigenvalues of the transfer matrix.

To compute the forced response the state-space/Riccati method of Section 2.2 was
used to derive the spectral element of one cell and the global stiffness matrix was
assembled for three cells (using the direct stiffness method commonly used in finite



element models). Applying a unit force at one end the acceleration response at the other
end can be computed for each frequency, which is the Frequency Response Function
(FRF). Figure 4 shows the computed FRF.
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Figure 4: FRF for a free-free three-cell rod with excitation at one end and response at the
other end.

4. EXPERIMENTAL RESULTS

The periodic rod used in the previous section was machined in bronze using a
numerically controlled mechanical lathe. Figure 5 shows a picture of the periodic rod in
the experimental setup for FRF measurement. A mini impact hammer was used to impose
the excitation at one end, and a mini accelerometer was used to measure the acceleration
at the other end. Figure 6 shows the measured FRF superposed with the simulated
FRF. A good agreement is found, as expected. The agreement is not perfect due to
approximate material properties, geometrical errors in manufacturing and experimental
errors. Background noise limits the lower values of the FRF, mainly within the band gap.

Figure 5: Experimental setup of the impact test used for measuring the FRF of the three-
cell rod manufactured in bronze.
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Figure 6: Measured and computed FRFs.

5. CONCLUSIONS

In this work we have formulated and implemented the PWE method for elastic
rods with varying cross-sectional area. The method can be used for arbitrarily varying
geometrical and material properties that can be expanded in spatial Fourier series. The
PWE obtains the dispersion diagram for periodic structures, which show the wave pass
bands and stop bands (band gaps). A state-space formulation was used to derive the
transfer matrix and the dynamic stiffness matrix of the rod cell. To solve the state-space
equations, a transformation of variables leading to a Riccati type equation expressed in
terms of the mechanical impedance was performed. With the element dynamic stiffness
matrix the forced response of assembled structures with a finite number of cells can
be computed. The proposed method has already been extended by the authors to other
one-dimensional structures such as acoustic ducts, beams and Levy plates [14].

The semi-analytical solutions exposed in this word can be useful for optimizing the
wave behavior and the forced response os one-dimensional structures consisting of a
limited number of periodic cells with properties varying along the cell length.

The proposed state-space/Riccati method can be seen as a method to derive spectral
elements of one-dimensional structures with arbitrarily varying properties along their
length. Such elements can be coupled to assemble a more complex built up structure.
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