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ABSTRACT

Phononic Crystals (PCs) are artificial materials created by a periodic repetition
of a unit-cell, made with an arrangement of high impedance variation system
(scatterers, shape, material property), in order to obtain band gaps. Elastic phonic
crystals are structural systems tailored using the same concept as the PCs. Curved
beams are important structural elements that can be found in many engineering
applications, such as aerospace structures, bridges, tunnels and roof structures.
The dynamic analysis of structures such as, arches, helical springs, rings, and tires
can be modeled using curved beam theory. They can be modeled using Transfer
Matrix (TM) method, which relates the left and right sides of the structure. In
general, the transfer matrix can be obtained by partitioning the dynamic stiffness
matrix. However, due to the inversion of some sub-matrix, this process may
generate an ill-conditioned transfer matrix. One away to avoid this problem is
using the Spectral Transfer Matrix (STM) method, where the transfer matrix can
be obtained directly from the space-state model of the system. In this paper, a
curved beam phononic crystal is modeled using a two material property unit-cell,
organized periodically along the curve and evaluated by STM. PCs work as a “wave
filter”, which can attenuate mechanical vibrations at a certain frequency band
called bandgap. Dispersion diagrams and forced responses are calculated for the
curved beam phononic crystal. The wavenumbers and wave modes were obtained
using the Floquet-Bloch theorem, and the forced response is calculated by the wave
expansion.
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Method.
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1. INTRODUCTION

The dynamical analysis of curved beams have been subject of several investigation due
the considerable number of application in engineering, such as aerospace structure,
bridges, tunnels and roofs. The curved beam theory also can be extended to modeling
of tires [1]. The governing equations of curved beam can be formulated for different
beam theories (Euler-Bernoulli, Timoshenko and Extended Timoshenko) and applied
for analysis of free vibration and wave propagation [2, 3, 4, 5]. Phononic crystals (PCs)
are artificial materials that exhibit periodic repetitions of a unit-cells. The changes
in the unit-cell are high impedance variation system (scatterers, geometry, material
property) in order to obtain frequency bands where the waves are prohibited to propagate.
THis frequency bands are called as stop bands or bandgaps. This arrangement allows
the structure to have the attribute of “wave filtering”, where the mechanical vibration
is attenuated in a certain frequency band of bandgap. The prediction of bandgap
regions for a particular PC arrangement can be done with the dispersion diagram of
the cell (wavenumber × frequency), which provides the wave behavior (propagating or
non-propagating) inside the structure. Several analytical and numerical methods have
been developed for calculating the band structure of PCs, such as the transfer matrix
(TM) method [6], the plane wave expansion (PWE) method [7], the finite difference time
domain (FDTD) method [8], the multiple scattering theory (MST) [9], the finite element
(FE) method [10], the wave finite element (WFE) method [11, 12, 13] and the spectral
element method (SE) method [14, 13]. In general, phononic crystal are modeled using
Transfer Matrix (TM) method, which relates the left and right sides of the structure. The
transfer matrix can be obtained by partitioning the dynamic stiffness matrix. However,
due to the inversion of some sub-matrix, this process may generate an ill-conditioned
transfer matrix. One away to avoid this problem is using the Spectral Transfer Matrix
(STM) method, where the transfer matrix can be obtained directly from the space-state
model of the system. In this paper, a curved beam phononic crystal is modeled using a
two material property unit-cell, organized periodically along the curve and evaluated by
STM.

2. MATHEMATICAL FORMULATION

2.1 Spectral Transfer Matrix Method

The STM is an alternative approach to derive the spectral element without need the exact
wave solutions of the frequency-domain governing equations [15]. The method is based
on the representation of the governing equations in a set of first order ordinary differential
equations. By introducing a state vector y, the system is transformed into a first-order
ordinary differential equation given by:

dy

dx
= Gy, (1)

where G is a coefficient matrix, y = {u F}T is the state-vector, u is the displacements
vector and F is the internal forces vector. The solution of the Equation 1 is:

y(x) = eGx y(0). (2)

Applying for a 1-D structural member of length L it has:

y(L) = eGL y(0) = Ty(0), (3)



where T = eGL is the transfer matrix. It is a matrix exponential that can be solved using
any method based on Cayley-Hamilton theorem [16].

2.2 Curved beam model

For a curved beam, the displacement and the internal forces can be rewritten in
according to the radial and circumferential orientation. The curved beam model is a
combination of elementary rod and Euler-Bernoulli beam theories. The straight beam
longitudinal and transversal displacements becomes circumferential and radial in the
curved beam, respectively, and the rotation remains the same. Figure 1 shows the in-plane
displacements () and internal forces of a curved beam.

Figure 1: Displacements and internal forces in a curved beam.
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where u, v and are the cir is circumferential displacemente E,A, ρ, ω and I are,
respectively, the Young’s modulus, cross-section area, mass density, circular frequency
and the moment of inertia. R indicates the curved beam radius.

The Equation 4 can be rewritten as:
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The internal forces and rotation are:
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The Equation 5 can be rewritten using the terms of internal forces, Equation 6, as:
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The transfer matrix is computed from Equation 3. This expression is showed in the
Appendix.

3. MODELING OF ONE-DIMENSIONAL PHONONIC CRYSTALS

The phononic crystal (PC) unit cell contains two materials, which are polymer and steel.
Figure 2 shows a schematic view of the phononic crystal and the unit-cell composed by a
sequence of polymer, steel and polymer.

For a 1D phononic crystal, the Equation 3 can be partitioned in terms of left and right
side of unit-cell as:

y(m)
r = Tc y

(m)
l , (8)

with the subscripts r and l corresponding to the right and left nodes of them−th unit-cell.
While Tc represents Its transfer matrix, calculated by:

Tc = T1T2T1, (9)

where the subscript 1 and 2 indicates the polymer and steel proprieties, respectively.
Using the coupling relation at the unit-cells interface ( y(m+1)

l = y
(m)
r ) and applying

Floquet-Bloch theorem [17] it has:

Tc y
(m)
l = e−i·kL y

(m)
l or Tc yl = e−i·kL yl. (10)

The eigenproblem of Equation 9 is solved and the eigenvalues produces dispersion
diagrams and the eigenvectors the wave modes. It is important to note that the



Figure 2: Curved beam: phononic crystal unit-cell composed by polymer-steel-polymer.

eigenvectors and eigenvalues are independent of the unit-cell position in the structure.
To each n degree of freedom has 2n eigenvalues that can be ordered appropriately into
two groups: |eµj | ≤ 1, j = 1, 2, . . . , n indicate waves propagating to the right and
|e−µ| ≥ 1, j = 1, 2, . . . , n correspond to waves traveling to the left. Therefore, wave
amplitudes can be obtained as follows [18]:

y(m) =
n∑
j

e−i·kjLΦj y
(m)
j with m = 1, 2, 3 . . . Nc, Nc+1, (11)

where j = 1, 2, . . . , n with n as the number of eigenvalues and Nc the total number of
unit-cells.

4. NUMERICAL RESULTS

4.1 Validation of the STM method

Initially, the STM method is compared with the Spectral Element (SE) method to
validate the transfer matrix obtained for curved beam. It is considered a curved beam of
rectangular cross-sectional area of width b = 100 mm and height h = b/10. The radius
of curvature is R = 10h and the hoop length S = Rπ. The boundary conditions is
showed in the Figure 3. The structures was excited with unity force in the circumferential
direction. The choice of the orientation force is arbitrary. The material properties
corresponds to polymer with Young’s modulus E = 3 GPa, density ρ = 1340 kg m−3,
Poisson’s ration ν = 0.4 and damping factor η = 0.002. Figure 4 shows the dispersion
curve and the forced response at the excitation point for a curved beam calculated by
STM and SE methods. The forced response is evaluated at the excitation point. As seen,
the STM approach presents good agreement with the SE method. Particularly, the STM
has an advantage for not require the exact wave solution of the governing equation.

4.2 Analysis for PC curved beam

A numerical example of a phononic crystal curved beam with two different material is
showed. It is considered a curved beam of rectangular cross-sectional area of width b = 20
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Figure 3: A cantilever curved uniform beam with excitation at circumferential orientation.
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Figure 4: Comparison of the SE and STM method for a curved beam. STM (—); SE (· · ·);

mm and height h = 3b. The radius of curvature is R = 10h and the hoop length S = Rπ,
similarly to previous numerical example. The number of cell is Nc = 40. The length
of each cell is Lc = S/Nc. The unit cell is formed by 35% polymer+30% steel+ 35%
polymer, as shown in the Figure 2. A clamped-free boundary condition is applied to the
structure. Figure 5 shows the boundary condition and the orientation of excitation force
used in the numerical example. Results were obtained using circumferential and radial
excitation. Table 1 shows polymer and steel properties.

For the considered case, it was evaluated the dispersion curve of the unit-cell, the
forced response and the reaction force. The dispersion curves relates the unit-cell
wavenumber versus analyzed frequency band. The wavenumber is calculated as
kc = i · ln(µ)/Lc with µ indicating the organized eigenvalue of the transfer matrix.
The eigenvalues (wavenumber) and of eigenvectors (mode shape) are organized by the
modal assurance criterion (MAC) [19]. The forced response and the reaction force are
calculated by Equation 10. It was evaluated the displacement of the three degree of
freedom (u, v and ψ) in the Nth cell as showed in the Figure 5. The reaction force is



Figure 5: A cantilever PC curved beam with excitation in two different orientation.

Table 1: Phononic Crystal Material Properties.

Property Steel Polymer
Elastic Modulus [GPa] 210 3

Density [kg m−3] 8030 1340
Poisson’s ratio 0.30 0.40
Damping factor 0.001 0.002

evaluated at the clamped end of the structure.
Figure 6 shows the dispersion and receptance curves, respectively. In the graph

of dispersion curve, it can see that the curved beam considers propagation of three
wave modes. The wavenumber is decomposed into real part (<[kcLc]) and imaginary
part (=[kcLc]). The bandgap region is indicated by the shaded areas. At the bandgap
region, the real part of wavenumber is equal to π or 0 (Bragg limit) while the imaginary
part has a non-zero value indicating a evanescent (non-propagating) wave behavior.
As noted, both the circumferential and radial wave modes have two bandgap regions
indicated for light blue shaded and gray shaded areas, respectively. As seen in the Figure
6, the receptance curve exposes a considered attenuation at the first circumferential
bandgap region (between 23.5-44.3 kHz). In this region the radial mode also presents
a bandgap. As can be noted, the circumferential and radial wave modes are related
itself. The attenuation only is significant with both circumferential and radial bandgaps
are in the same frequency range. Another region where the bandgap modes intersects
itself is highlighted in the Figure 6 (between 121-122.4 kHz). Although the imaginary
wavenumber part is small, in absolute values, the attenuation is considerable due to the
combination of circumferential and radial bandgap.

Figure 7 shows the transmittance curve. As seen, the attenuation behavior is similar
to the first case shown in the Figure 6 where the decrease of transmittance values is
significantly higher when the two different bandgap occurs simultaneously. However,



Figure 6: Dispersion curve and forced response for PC curved beam. Circumferential
mode (—); Radial mode (—); Rotation mode (—); Bragg limit (- - -).

it can be noted that the transmittance values presents more notable attenuation than in the
forced response (Figure 6).

Figure 7: Dispersion curve and transmittance curve for PC curved beam. Circumferential
mode (—); Radial mode (—); Rotation mode (—); Reaction circumferential force (—).

5. CONCLUSIONS

The STM approach was proposed as a new procedure to investigate structural phononic
crystals using curved Euler-Bernoulli beam theory. The STM methodology involves a
transformation of the governing equation in a state-space vector form where the exact
wave solutions are not required and allow the direct evaluation of the transfer matrix.
Therefore, the ill-conditioned transfer matrix problem is avoided. The wave modes of a
periodic structure can be evaluated directly with the transfer matrix eigenvalue problem,



then bandgaps can be identified in the dispersion diagram and the attenuation can be
evaluated by the forced responses. The STM method was compared with SE method
and showed good agreement. The numerical results shows that due to the attenuation
between the circumferential and radial modes, the attenuation of the forced response is
considerable higher when the bandgap of this two modes occurs simultaneously. The level
of attenuation of the forced response do not depends on the orientation of the excitation
force due to coupled wave modes present in the curved beam.
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APPENDIX: EXPRESSION OF THE TRANSFER MATRIX FOR CURVED
BEAM

The complete expression for the transfer matrix is given as:

T11 = p7C1 + p8C2 + p9C3 T12 = a
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p11S1√
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√
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(A.1)
The terms z1, z2 and z3 are roots of the polynomial given below:

ξ3 + (2a2 + bd)ξ2 + (a4 − a2bd− cd) ∗ ξ + (a2cd− bcd2), (A.2)
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And the auxiliary terms used in the expressions are described in the A.4, A.5 and A.6:

x1 = a4 − (a2b+ c)d x2 = 4a2 + 2bd
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